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Abstract
Zinc oxide nanoparticles (ZnO-NPs) have in recent times shown effective adsorption capability for the confiscation of colour 
contaminants from aqueous environments (aquatic ecosystems or water bodies) due to the fact that ZnO contains more func-
tional groups. Direct blue 106 (DB106) dye was selected for this present study as a model composite due to its wide range 
of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications, along with its 
potential for impairments. This study therefore focuses on the use of DB106 dye as a model composite due to its wide range 
of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications and their potential 
for impairments. Furthermore, the surface functionalization, shape, and composite pore size were revealed by TEM, FTIR, 
UV, and BET techniques. The current study uses green synthesis method to prepare ZnO-NPs as an adsorbent for the DB106 
dye molecules adsorption under various conditions using the batch adsorption process. The adsorption of DB106 dye to the 
ZnO-NPs biosorbent was detected to be pH-dependent, with optimal adsorption of DB106 (anionic) dye particles observed 
at pH 7. DB106 dye adsorption to the synthesized ZnO-NPs adsorbent was distinct by means of the linearized Langmuir 
(LNR) and pseudo-second-order (SO) models, with an estimated maximum adsorption capacity (Qm) of 370.37 mg/g.
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Introduction

The issues of ecological destruction that are harming natural 
resources and causing a variety of environmental effluences 
(in the form of toxic wastes) as a result of increased industrial 
activity, a significant increase in population, and constant 
high-tech development are now a serious threat to the human 

being and its environment on a global scale (Onyancha et al. 
2021a; Ukhurebor and Aidonojie 2021; Ukhurebor et al. 
2021a). The majority of these environmental toxic wastes are 
the result of industrial processes, including dyes (Aigbe et al. 
2021a; Eldeeb et al. 2022a, b), heavy metals (HMs) (El-Nemr 
et al. 2022; Aigbe et al. 2022; Onyancha et al. 2022; Eler-
yan et al. 2022), wastewater (Aigbe et al. 2021a, b; Sudarni 
et al. 2021), gas flares, and crude oil spills (Ukhurebor et al. 
2021b; Onyancha et al. 2021; Ukhurebor et al. 2022a), among 
others. These environmental effluences rising from indus-
trial operations are aggravating the negative environmental, 
health, and climatic challenges that are jeopardizing both the 
terrestrial, aquatic, and atmospheric ecosystems (Ukhurebor 
et al. 2022a; Ukhurebor et al. 2021c; Onyancha et al. 2021; 
Ukhurebor et al. 2022b).

The textile industries consume several quantities of 
chemicals and water and, in return, emit a lot of hazard-
ous and non-biodegradable chemical effluents, such as 
dyes, and are a significant cause of industrial pollution 
(Jaafari et al. 2018; Ali et al. 2020a; Eldeeb et al. 2022a, 
b; Al-Arjan 2022). Due to dyes’ beneficial qualities, such 
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as vivid colours, water resistance, and simplicity of appli-
cations (Al-Arjan 2022; Yang et al. 2022), they are fre-
quently used in several textile-based businesses (Eldeeb 
et al. 2022a, b; Ali et al. 2020a; Hassaan et al. 2022). 
Synthetic dyes are used extensively in several industries, 
including textile dyeing (amounting to about 60%), paper 
(amounting to about 10%), and plastic products (amount-
ing to about 10%) (Al-Arjan 2022).

As noted by several reports, there are about a hundred 
thousand commercially existing dyes with a manufacturing 
capability of over 7.0 ×  105 metric tons annually, with the 
industries involved in textile manufacturing using approxi-
mately ten thousand composites (Al-Arjan 2022). Indus-
trial effluents from dyes, in particular, necessitate not only 
the management of difficult wastewater with high biologi-
cal and chemical oxygen demands, deferred constituent 
parts, and dangerous chemicals, but also the treatment of 
dyes that are perceptible to human senses at very low con-
centrations (Al-Arjan 2022; Kusuma et al. 2023; Neolaka 
et al. 2023). When dyes are discharged into aquatic set-
tings (water bodies), reductive azo linkage cleavage takes 
place, creating harmful amines that can harm key organs 
like the kidney, brain, and liver as well as the reproductive 
and central neurological systems (Al-Arjan 2022; Kusuma 
et al. 2023; Neolaka et al. 2023). Due to the existence 
of metals, chlorides, aromatics, and other impurities, 
synthetic dyes may also negatively affect some aquatic 
life’s ability to photosynthesise. As a result, it is crucial 
to remove them from aquatic ecosystems (water bodies), 
and this is the subject of various scientific investigations 
(Al-Arjan 2022; Bayramoglu and Arıca 2007; Hassaan 
et al. 2020a, b; El Nemr et al. 2021a; Hassaan et al. 2021).

Exchange of ions (Guida et al. 2022), electrolytic reduc-
tion (Golder et al. 2011), membrane and oxidation technolo-
gies (Schwermer et al. 2018; Deng and Zhao 2015), chemi-
cal precipitation (Harper and Kingham 1992), flocculation/
coagulation (Song et al. 2004; Semerjian and Ayoub 2003), 
and adsorption by biological means (Sudarni et al. 2021a; 
El-Nemr et al. 2022), are some of the notable developed 
scientific investigations (methods) that have been used for 
the dyes and impurities adsorption from aquatic ecosystems 
(water bodies) and wastewaters. Due to its ease of use, high 
efficiency, and versatility for using a variety of adsorbents, 
adsorption by the biological process has recently become 
the most widely used processes for the adsorption of dyes 
from aquatic ecosystems and wastewaters (Zazouli et al. 
2016; Azari et al. 2017, 2020; Al-Arjan 2022; El Nemr et al. 
2021a; Hassaan et al. 2021; Hassaan et al. 2020a, b).

Diverse nanoparticles (NPs) have also been investigated 
for dye removal by biological processes because of the ease 
with which their surface functionality may be adjusted and 
their high surface-to-volume ratio for increased removal effi-
ciency (Ghiloufi et al. 2016). It is believed that dyes from 

aqueous solutions (aquatic ecosystems) can be adsorbable by 
nanoscale metal oxides, such as aluminium, cerium, ferric, 
and magnesium oxides (Agrawal and Sahu 2006). Addition-
ally, the effectiveness of these NPs as very effective adsor-
bents for the sorption of metal ions from aquatic ecosystems 
and wastewaters has been thoroughly studied. They have 
many advantages, containing unsaturated surfaces, ease of 
use, high ability, rapid kinetics, and favourable dye removal 
in aquatic ecosystems and wastewaters (Agrawal and Sahu 
2006).

As a low-toxicity substance, zinc oxide (ZnO) has several 
applications, including those in the biomedicine (Azizi et al. 
2016), catalysts (Zeng et al. 2008), gas sensing (Jing and 
Zhan 2008), and solar cells (Chou et al. 2007; Emegha et al. 
2022). Additionally, ZnO is a member of the group of metal 
oxides that have a significant economic impact due to their 
impressive uses in a variety of industrial sectors, including 
solar cells, catalysis, paints, electronic devices, UV light-
emitting devices, cosmetics, and biomedicine. Similar to 
ZnO-NPs, these semiconductors have drawn interest for 
their widespread variety of uses in optics, optoelectronics, 
electronics, and dye removal using environmentally friendly 
synthesis materials such as bacteria, fungi, and marine mac-
roalgae (Al-Arjan 2022). ZnO has also been shown to be 
more efficient than other metals in the bio-synthesis of NPs 
for biomedical purposes (Naseer et al. 2020). The most sig-
nificant metal oxide NPs are ZnO-NPs due to their special 
chemical and physical characteristics, which expand their 
usefulness (Elia et al. 2014). It can be difficult to remove 
certain contaminants from the environment; consequently, 
adsorption by biological processes or techniques is typically 
considered to be easier and more efficient. The useful appli-
cation of ZnO in water purification, containing contamina-
tion removal and reuse, has drawn significant consideration 
recently due to its huge theoretical specific surface area (Yu 
et al. 2015). ZnO has demonstrated better adsorption perfor-
mance because it contains more functional groups. ZnO may 
therefore be more useful in adsorption technologies (adsorp-
tion by biological processes or techniques). In addition, it 
was discovered that ZnO worked better as an adsorbent to 
remove sulphur compounds and  H2S than other adsorbents 
such as activated carbon, phosphate, and iron oxide (Al-
Arjan 2022; Hassan et al. 2008).

Recently, it was discovered that ZnO-NPs effectively 
absorbed colours from aquatic ecosystems or water bod-
ies (aqueous environments) (Al-Arjan 2022; Wang et al. 
2010). Direct blue 106 (DB106) dye was selected for this 
present study as a model composite due to its wide range of 
uses in textiles (cotton and wools), woods, and paper indus-
tries, as well as their therapeutic applications, along with 
its potential for impairments. In this study, the adsorption 
batch process was used to synthesize a composite of ZnO-
NPs as an adsorbent for the adsorption of DB106 dye from 
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aquatic ecosystems or water bodies (aqueous environments) 
under varied circumstances. The pH, starting concentration 
of DB106 dye, time of contact, dosages of adsorbent, and 
process temperature were the core factors that were assessed. 
Furthermore, the surface functionalization, shape, and the 
composite pore size were revealed by TEM, FTIR, UV, and 
BET techniques. The adsorption performance of the devel-
oped material was also examined using adsorption optimi-
zation analysis, kinetics, isotherms, and thermodynamics. 
Therefore, the aim of the current study was to reconsider and 
investigate the potential benefits of utilizing green synthesis 
method for ZnO-NPs preparation for DB106 dye removal. 
The purpose of this study was to demonstrate modern 

methods of removing DB 106 dye using more widely avail-
able, inexpensive, high-efficiency, and environmentally 
friendly NPs.

Experimental

Materials and equipment

NaOH, Zn(CH3CO2)2
.2H2O, HCl, DB106 dye (Fig. 1), and 

EtOH were obtained from Sigma (Sigma–Aldrich, Ger-
many). Red alga A. plumula (Antithamnion plumula) was 
obtained from Kiel, Germany. High-performance double 
beam spectrophotometer instrument model Pg/T80 UV/
Visible matched with 1 cm glass cells as an optical path 
was used for dye concentration analysis. JSOS-500 shaker 
equipment and JENCO-6173 pH meter were used during 
this experimental work. The GC-mass spectrometry (Agi-
lent 7890A) linked with a MS detector (Agilent 5975C) and 
HP5 column chromatography was applied for the chemical 
analysis of algae.

Batch adsorption studies

Batch DB106 dye adsorption investigation was accompanied 
to examine the effects of several variables on the adsorption 
isotherm and reaction kinetics, including pH, starting con-
centration of dyes, ZnO-NPs doses, speed of agitation, time 
of contact, and process temperature. The necessary quantity 

Fig. 1  DB106 dye chemical formula (MF:  C30H16Cl2N4Na2O8S2) 
(MW: 741.49  g/mol) (C.I. 51,300) (Also named as: Fast Blue BL, 
Direct Brill Blue BL, Blue BL-0l, Sky Blue D-F2G) (CAS number: 
6527–70-4)

Fig. 2  GC–MS analysis 
chromatogram of red algae A. 
plumula extract
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of ZnO-NPs was added to dye solutions with known concen-
trations, and then the mixture was agitated for the definite 
times. Initial kinetic measurements were used to obtain an 
estimate of the time required to reach equilibrium condi-
tions. After that, the solutions were filtered, and a UV–Vis 
spectrophotometer was used to monitor the absorbance at 
λmax 660 nm to quantify the remaining concentration of 
DB106 dye in the filtrate. By regulating the pH of the dye 
solutions with NaOH and HCl solutions, the pH impact was 
also studied. Analysing the dye solution’s ability to bind to 
surfaces at various contact times allowed for the determina-
tion of the adsorption kinetics. Solutions of several concen-
trations were stirred with the ZnO-NPs until equilibrium was 
reached in order to examine adsorption isotherms. Using 

Eq. (1), it was possible to calculate the equilibrium adsorp-
tion capacity (qe).

The capability of the ZnO-NPs to remove DB106 dye 
from water at an equilibrium time is known as the adsorption 
capacity (qe), which is represented as mg DB106 dye per g 
ZnO-NPs. In this equation, C0 (mg/L) stands for the DB106 
dye’s beginning concentration, and Ct (mg/L) for the dye’s 
remaining concentration after the removal process has been 
finished for a predetermined amount of time (min). Use the 
following Eq. (2) to compute how much DB106 dye has 
been removed from water.

DB106 dye removal was investigated via mixing ZnO-
NPs (0.2 g/L) and DB106 dye solution (50 mL) with a start-
ing pH value ranging between 3 and 11. 0.1N HCl or 0.2N 
NaOH solutions were used to regulate the levels of pH, and 
the results showed that pH affected DB106 dye adsorption. 
The mixtures were agitated at 200 rpm for 120 min at 25 °C 
afore being sampled for DB106 dye measurement, which 
took place after 120 min.

In order to conduct the isotherm research, DB106 dye 
solutions (50 mL) was mixed at 200 rpm for 2 h at 25 °C 
with varied starting DB106 dye solution concentrations 
(10–40 mg/L) and varying doses of ZnO-NPs (40–200 mg) 
until the dye solutions attained equilibrium. By shaking 

(1)qe =

(

C
0
− Ct

)

W
× V

(2)% dye removal =

(

C
0
− Ct

)

C
0

× 100

Scheme 1  Preparation mechanism of green ZnO-NPs
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Fig. 3  The FTIR curve of synthesized green ZnO-NPs
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50 mL of starting DB106 dye concentration for ZnO-NPs 
with varying adsorbent dosages (40, 80, 160, and 200 mg) 
at various interval times at 25 °C for different periods at 
different intervals, the effect of ZnO-NPs dose and contact 
length on DB106 dye removal was investigated.

Preparation of ZnO‑NPs

For ZnO-NPs synthesis, 2.195 g of Zn(CH3CO2)2
.2H2O was 

liquefied in 10 mL of red algae A. plumula extract and 90 mL 
distilled water (DW) in constant agitation at room tempera-
ture for 4 h. Then, a solution of 1.0 M NaOH was added 
drop-wise into the reaction mixture until the pH reached 10, 
and the agitation was continued for 3 h at 70 °C. The con-
taminants were removed by filtering and repeatedly washing 
the resultant white precipitate with DW and ethanol. The 
resultant white powder was then dried for 4 h at 80 °C in 
a vacuum oven (Hassaan et al. 2019; Albo Hay Allah and 
Alshamsi 2022; Hassaan et al. 2020a). The dried powder 

was then carefully collected and used for further research 
after being calcined for 3 h at 550 °C to produce pure, pale 
white ZnO-NPs (Hassan et al. 2015; Hassaan et al. 2019; 
Hassaan et al. 2020a; Amirante et al. 2018).

Classification and analysis

ZnO-NPs sample was analysed using the subsequent instru-
ment: Fourier transform infrared (FTIR) spectroscopy model 
VERTEX70 linked to V-100 platinum ATR model, Bruker, Ger-
many, in the 400–4000  cm−1 wavenumber range. The Raman 
spectra (RS) model V-100 VERTEX70, Germany, the ZnO-NPs 
samples were excited to a laser beam of 532 nm (green laser) 
and the samples were exposed to the laser beam for 1 s at 10 mW 
power with aperture 25 × 1000 mm. XRD analysis was made by 
a Bruker Meas Srv (D2-208,219)/D2-2,082,019 diffractometer 
that controls at 30 kV, 10 mA using Cu tube (λ = 1.54 Å) in 
the range between 0 and 100°. The crystallite sizes were meas-
ured for ZnO-NPs by the method of Scherrer. The synthesized 

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

R
am

an
 In

te
ns

iti
y

Wavenumber cm–1

Fig. 4  Raman analysis of synthesized green ZnO-NPs

Table 1  Crystal size (CS) 
calculation of synthesized green 
ZnO-NPs

Location CS of green 
ZnO-NPs (nm)

31.64° 3.2
34.32° 3.6
36.18° 3.3
47.58° 2.9
56.52° 2.8
62.76° 2.4
66.64° 3.0
68.84° 2.4
69.18° 2.5
77.01° 3.1

Fig. 5  XRD spectra analysis of 
prepared green ZnO-NPs
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ZnO-NPs was categorized by a Transmission Electron Micro-
scope (TEM) (JEOL, Model JSM 6360LA, Tokyo, Japan). 
Thermogravimetric (TGA) analysis of the ZnO was performed 
by (the TERIOS SDT650 instrument). The BELSORP—Mini 
II, BEL Japan, Inc. was used to measure the mean diameter 
of the pores and the BET (Brunauer–Emmett–Teller) specific 
surface area.

Preparation of A. plumula extract

The harvested red algae A. plumula (obtained from Kiel, 
Germany) were placed in a polythene bag and delivered to 
the lab after being rinsed with water to remove sand and 
epiphytes. To further eliminate salts and other pollutants, the 
algae were washed with DW before being shade-dried and 
stored. Using a mortar and pestle and an electric blender, the 
dried algae were broken up into minute bits. 20 mL of meth-
anol and 2 g of the powdered algae sample were combined 
to create the extract (Ragunathan et al. 2019). The mixture 
was then incubated in at 25 °C for the following day. After 
that, the extract was filtered with a funnel and No. 1 What-
man filter paper. In a conical flask of 100 mL, the extract 
was collected. The collected extract was evaporated under 

vacuum to collect the crude extract of the algae. Following 
collection, the extracted was used for GC–MS analysis.

Point of zero charge (pHpzc)

The pHpzc of ZnO-NPs was assessed by the pH drift process 
(Shoaib et al. 2022a, b), in which suspensions of ZnO-NPs 
in 0.01 M NaCl solutions with various beginning pH values 
(3–11) were used for this investigation. The starting pH val-
ues (pH initial) were designed in contradiction of the end 
pH values (pH final), and the point of crossing between the 
 pHinitial –  pHfinal curve and the  pHinitial =  pHfinal line give the 
point of zero charge value.

Results and discussion

Red algae extract analysis using GC–MS

Many compounds, such as alcohol, phenols, ethers, and esters 
were detected in the GC–MS chromatogram by application of 
NIST library. The algae A. plumula extract analysis by GC–MS 
showed eleven chemical compounds as major (Fig. 2). Between 
these compounds, at retention time (RT) 7.11 min is compound 
dodecamethylcyclohexasiloxane, RT 7.92 min is compound 
5-octadecenal, RT 9.39 min is compound 2,4-bis (1,1-dimethy-
lethyl) phenol, RT 10.26 min is compound 3-hydroxyspirost-
8-en-11-one, RT 13.41 min is compound estriol 16-glucuronide, 
and RT 14.82 min is compound 9-desoxy-9x-chloroingol-
3,7,8,12-tetraacetate were identified by NIST library. The fol-
lowing is a hypothesis on how these bioactive chemicals encour-
age bio-reduction: as indicated in Scheme 1, during the early 
stage, the metal ions go through the activation phase, where 
the development rate of particles is typically slow as the metal 
ions are reduced from their salt precursors by the achievement 
of biomolecule metabolites of plant with reduction abilities. In 
the present study, the reduction of zinc ions happens due to the 
presence of biomolecules in red algae A. plumula extract such 
as 2,4-bis(1,1-dimethylethyl) phenol.

ZnO‑NPs categorisation

FTIR investigation

Phytoconstituents present in the red algae extract play a vital 
role in the reduction of ZnO-NPs and act as a covering agent 
on ZnO-NPs. FTIR analysis of synthesized ZnO-NPs is 
presented in Fig. 3 which verified in a wavenumber ranged 
between 400 and 4000  cm−1 to identify the structure of pre-
pared green ZnO-NPs. The band at 503.43  cm−1 is matched 
to ZnO, confirming the formation of ZnO-NPs (Hassaan 
et al. 2020a, b). The peaks at 887.2, 1448.5, and 1641.4  cm−1 
matched respectively to C–H, C–C, and H–O–H, and are Fig. 6  TEM images of synthesized green ZnO-NPs
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corresponding to the presence of an organic compound. The 
broad band at 3462.4  cm−1 is matching to the OH, which char-
acterises the existence of  H2O molecules on the ZnO-NPs 
surface (Alim et al. 2005; Ashkenov et al. 2003; Xu et al. 
2007; Ali et al. 2020b; Soliman et al. 2018; Salah et al. 2021).

Raman spectra analysis

In this approach, electrons are excited into higher energy 
levels as they relax back to a certain vibrational level, 
which offers information on the sample’s structural and 
vibrational features, which are supported by FTIR steps. 
The green synthesized ZnO-NPs are Raman active modes. 
In this study, ZnO-NPs show that the prominent vibra-
tion bands (secondary vibration) at 101.5, 337, 438, and 
589.5  cm−1 match to the E2L, E2H–E2L, E2H, E 1 (LO) 
essential phonon modes of hexagonal ZnO-NPs, respec-
tively (Fig. 4). The maximum band is 438  cm−1 corre-
sponding to E2 mode wurtzite structured ZnO and a very 
sharp feature. The band at 589.5  cm−1, situated between 
A1 1 (LO) and E1 (LO) optical phonon mode, arises due 
to multi-phonon and resonance processes and is related to 

oxygen imperfection. Also, the acoustic combination of 
A1 and E2 is observed around 1155  cm−1.

XRD analysis

Figure 5 depicts the synthesised green ZnO-NPs’ XRD dif-
fraction pattern. The index numbers for the peaks 2 are 31.64 
(100), 34.32 (002), 36.18 (101), 47.58 (102), 56.52 (110), 62.76 
(103), 66.64 (200), 68.84 (201), 69.18 (201), and 77.1. All of the 
obtained bands approve the hexagonal structure that is consistent 
with the literature, proving that the powder is extremely crystal-
line (Hassaan et al. 2020a). Strong, sharp peaks and the absence 
of bands from other zinc oxide and impurity phases demonstrate 
the ZnO-NPs’ high purity and crystallinity. The particle sizes 
of the prepared green ZnO-NPs are determined by the Scherrer 
formula and are found to be in the range of 2.4–3.6, respectively. 
The Debye–Scherrer Eq. (3) uses the full width at half maximum 
(FWHM) of the 101 anatase band to estimate the crystallite sizes 
of the ZnO-NPs in Table 1 (Hassaan et al. 2020a).

(3)CS =
0.89�

�cos�

Fig. 7  TGA analysis of pre-
pared green ZnO NPs

Table 2  Analysis information 
of synthesized green ZnO-NPs 
using BET and BJH analysis 
methods

Vm, volume of mono-layer pores  (cm3 (STP)  g−1); SBET, BET specific surface area  (m2  g−1); VT, volume 
of total pores  (cm3  g−1); Pm, mean diameter of pores (nm); VP, measopore volume  (cm3  g−1); SBJH, surface 
area measured by BJH analysis method; rp,peak, mean pore radius by BJH analysis method

BET analysis BJH ads. analysis BJH des. analysis

Vm SBET VT Pm VP SBJH rp,peak VP SBJH rp,peak

4.6206 20.111 0.04377 8.7057 0.04362 20.08 1.22 0.4048 13.994 1.66
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Fig. 9  (a)  pHPZC of ZnO-NPs and (b) impact of pH of the confiscation of DB106 dye

Fig. 8  Surface area analysis of synthesized green ZnO NPs (a)  N2 Adsorption–desorption curve, (b) BET investigation curve, (c) BJH investiga-
tion of adsorption curve, (d) BJH analysis of desorption curve
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where Cs designates the crystallite size, λ is the XRD wave-
length (1.5406 Å), θ is the Braggs’ XRD diffraction angle, 
and β is the FWHM in radians.

Transmission electron microscope (TEM)

TEM was used to further investigate the form and disper-
sion of nanoparticles (TEM). Green ZnO-NPs with diverse 
nanostructures, such as needle-like and sheets (leaf-like), 
have been generated via green synthesis Fig. 6. One day 
following the preparation process, all of the TEM charac-
terizations were completed. The particle distribution was 
computed after digitizing the numerous TEM images, and 
the outcomes were discovered to be in agreement with those 
of the XRD investigation.

Thermal analysis (TGA)

TGA, the widely accepted method to determine the biomass 
thermal degradation, is used to investigate the biomass ther-
mal stability (Sanchez-Silva et al. 2012; Carrier et al. 2011). 
One represents the loss of moisture from the ZnO NPs sam-
ple at temperatures between 100 and 210 °C, accounting for 
0.137% of its weight, while the remaining six represent the 
cellulose and lignin degradation at temperatures from 210 
to 950 °C, resulting in a weight loss of 0.73% of the green 
ZnO NPs sample as presented in Fig. 7.

BET analysis

Porous nature of the green ZnO-NPs is investigated using 
the Brunauer–Emmett–Teller (BET) surface area, as shown 
in Table 2 (Barrett et al. 1951; Li et al. 2022; Yılmaz et al. 
2022). The surface area of ZnO NPs obtained using BET 
analysis is 20.111  m2/g, mono-layer volume (Vm) is 4.6206 

 cm3 (STP)  g−1, the total volume of pores is 0.04377  cm3/g, 
and the mean diameter of pores (Pm) is 8.7057 nm (Fig. 8). 
The mesoporous material characteristics are consistent with 
the average pores having a diameter < 50 nm. Therefore the 
BJH analysis was applied to the adsorption desorption curve 
and the achieved data were presented in Table 2.

pH impact on the sorption of DB106 dye

The sorption technique’s effective treatment of water-soluble 
solutions is impacted by the sorbent properties, ion selectiv-
ity of heavy metals, pH of the solution, temperature, contact 
time and co-existing ions. It generally varies with the sorbent 
properties like the size of the particles, pore-size structure, 
 pHpzc and the precise surface area (SBET) (Wei et al. 2022). 
A critical regulatory factor in the sorption method is the pH 

Fig. 10  Influence of sorbent dosage of sorption DB106 dye

Fig. 11  Impact of starting DB106 dye concentration on the confisca-
tion of dye molecules

Fig. 12  Contact time impact on the DB106 dye adsorption
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value of the solution. It impacts the degree of solute ioniza-
tion as well as the sorbent surface charge and the functional 
groups’ dissociation on the sorbent active sites (Amin 2009; 
Markandeya et al. 2017). The  pHPZC of the sorbent was 
found to be 7.1, which meant that at pH below the  pHPZC, the 

active surface sites on the sorbent were positively charged 
and while at pH greater than  pHPZC, the active surface sites 
on the sorbent were negatively charged (Fig. 9a). The per-
centage of DB106 dye molecules sequestered as the solu-
tion pH was increased from pH 2 to 7, and subsequently 
decreased with increasing pH values, with the optimal sorp-
tion of dye molecules noticed at pH 7 (Fig. 9b). At low pH, 
the adsorption of the dye molecules to the sorbent was due 
to the electrostatic attraction between the protonated  (H+) 
sites on the sorbent and the anionic dye, hence the increased 
removal of the molecules of dye at the acidic pH. The active 
sites on the sorbent get deprotonated  (OH–) when the pH of 
the solution rises, which causes an electrostatic attraction 
between the anionic dye molecules and the negative charge 
sites on the sorbent. Thereby reduced sorption of the dye 
molecules observed at the basic pH. In the neutral pH (pH 
7), the forces of attraction and repulsion were sidestepped 
and the optimum sequestration of the dye molecules to the 
sorbent surface sites was a result of the Van der Waals forces 
acting as an intermolecular force of attraction between the 
molecules of DB 106 dye molecules and the sorbent active 
surface sites (Shabaan et al. 2020). The same phenomenon 
noticed under the impact of pH on the adsorption DB106 

Fig. 13  Temperature impact on the confiscation of DB106 dye

Fig. 14  Linear plots of (a) FO, (b) SO, (c) ID and (d) FD models
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dye molecules in this study was reported also in the studies 
by Salama et al. (2022) and Hassan et al. (2021), where the 
best sorption of anionic dye molecules was observed at pH 7.

Dosage impact on the DB 106 dye sorption

The sorbent quantity is an extensive parameter in a system 
that impacts the rate of sorption (Shabaan et al. 2020). As 
observed from Fig. 10, the % of DB106 dye sequestered 
from the aqueous solution to the sorbent active surface 
sites, enhanced with increasing dosage of sorbent used 
(0.04–0.20 g/L) as time interaction was improved. The maxi-
mum sorption of DB106 dye molecules was noticed using 
the dosage of 0.20 g/L with increasing time of interaction. 
Enhancing the sorbent dosage led to the offering of more 
active surface sites on the ZnO-NPs, which improved the 
adsorption of DB106 dye molecules (Salama et al. 2022; 
Jaber and Jabbar 2021).

Impact of starting concentration of DB106 dye

The impact of beginning concentration of DB106 dye on 
the sorption process was assessed at DB 106 dye concentra-
tions array of 10–40 mg/L as represented in Fig. 11. It was 
detected that increasing the DB106 dye concentration from 10 
to 40 mg/L over time, the % of DB106 dye removed decreased 
with increasing concentration of DB106 dye. At low DB106 
dye concentrations, the number of active surface sites on the 
sorbent available was high relative to the DB106 dye concen-
tration. Hence, dye molecules had sufficient active surface 

sites on the sorbent to interact with and occupy. With improve-
ment in the DB106 dye concentration to 40 mg/L, the quantity 
of active surface sites on the sorbent available for the dye mol-
ecules was reduced, thereby leading to reduced interaction and 
decreased removal of dye molecules (Jaber and Jabbar 2021). 
The improvement in the elimination of dye molecules as the 
beginning dye concentration was increased was due to reduced 
mass transfer resistance between the water-soluble and solid 
stages that happens with improving the preliminary DB106 
dye concentration (Amin 2009; Nourmoradi et al. 2015).

Impact of stirring speed on DB 106 dye sorption

A key mass transfer factor that impacts the sorption pro-
cess is the stirring or shaking speed. The impact of the 
shaking speed on the sequestration of DB106 dye onto 
the sorbent was assessed at varying shaking speeds of 
50–200 rpm. Data reported in Fig. 12 show that the % 
of DB106 dye confiscated to the sorbent improved with 
increasing shaking speed as the time of shaking was 
increased, with optimum removal noticed using the shak-
ing speed of 200 rpm. At low shaking speed, the time that 
was needed to attain equilibrium was longer and increasing 
the agitation speed led to an increased diffusion rate of the 
molecules of dyes from the majority liquid to the liquid 
boundary layer surrounding the particles which became 
above average owing to improved instability and reduced 
the liquid boundary layer thickness as the speed of agita-
tion enhanced (Bhatti et al. 2015).

Table 3  0.3 g/L was used to 
determine the factors of the FO 
and SO models.

Parameter FO SO

ZnO-NPs DB106 dye Initial 
Conc. (mg  L−1)

k1 R2 k2 ×  103 h R2

0.3 g  L−1 25 3.4545 0.6915 0.35721 6523.2 0.981
30 2.7636 0.9428 0.09189 1134.4 0.926
35 0.4606 0.5609 11.7037 16,920.5 0.999
40 2.9939 0.8085 0.05405 446.7 0.393
45 0.4606 0.7282 13.4149 4904.4 0.999

Table 4  0.2 g/L was used to 
calculate the factors of the FO 
and SO models.

Parameter FO SO

ZnO NPs DB106 dye Initial 
Conc. (mg  L−1)

k1 R2 k2 ×  106 h R2

0.2 g  L−1 25  − 2.51 0.897 0.02 0.0500 1.0
30  − 1.87 0.790 0.09 0.9000 1.0
35  − 1.29 0.767 0.01 0.2228 1.0
40 2.99 0.968 0.01 0.4000 1.0
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Temperature influence on the sorption of DB106 dye

It was detected that the influence of temperature on the con-
fiscation of DB106 dye improved with increasing tempera-
tures (Fig. 13). The optimal sorption of the DB106 dye was 
reported at 45 °C. This was attributed to the dye solubil-
ity, which reduces as time and temperature were enhanced 
and thereby leading to the high rate of sorption of dye mol-
ecules to the green ZnO-NPs. Also, due to the increased 
mobility of the molecules of dyes at elevated temperatures 
led to the increased sorption of dye (Karthik et al. 2020). 
As reported in the study of Bhatti and Nausheen (2015), 
increased removal at elevated temperatures was attributed to 
the development in the pore numbers on the green ZnO-NPs 
surface. Also, the green ZnO-NPs outer surface thickness 
was reported to be decreased and the dye molecules kinetic 
energy enhanced at elevated temperatures, thereby leading 

to the DB106 dye molecules being effortlessly sorbed into 
the sorbent surface.

Kinetic models

The adsorption kinetic is utilized to research the variation 
in the adsorption extent over time and this could present a 
basis for a process model in engineering and insight into 
the sorption mechanism (Eldeeb et al. 2022a, b; Aigbe 
et al. 2022a). To assess the sorption of DB 106 dye to 
ZnO-NPs, the pseudo-first-order (FO), pseudo-second-
order (SO), intraparticle diffusion (ID) and film diffusion 
(FD) models. The data of the fitting of the linear plot of 
the different models are represented in Fig. 14. The coef-
ficient of regression (R2) closeness to unity (1) was used 
to describe the magnitude of the determined model appro-
priateness to the data. From the determined parameters in 

Table 5  The parameters of 
the ID and FD models were 
determined at 0.3 g/L

ZnO-NPs DB106 dye Initial 
Conc. (mg  L−1)

ID FD

Kdif C R2 KFD R2

0.3 g  L−1 25 8.437 31.123 0.9769 0.004 0.8573
30 6.626  − 9.829 0.9568 0.003 0.9784
35 0.693 30.605 0.9538 0.000 0.9755
40 3.679  − 6.756 0.9683 0.003 0.5440
45 0.383 14.671 0.9822 0.000 0.9653

Table 6  The parameters of 
the ID and FD models were 
determined at 0.2 g/L

ZnO-NPs DB106 dye Initial 
Conc. (mg  L−1)

ID FD

Kdif C R2 KFD R2

0.2 g  L−1 10 0.000 49.996 0.6614 0.032 0.8974
20 0.001 99.992 0.8041 0.048 0.7901
30 0.002 149.980 0.7123 0.024 0.9066
40 0.003 199.970 0.8190 0.042 0.9675

Fig. 15  Linear plot (a) LNR and (b) FRH models
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Tables 3, 4, 5, and 6, using 0.2–0.3 g/L of the sorbent, it 
was found that the R2 values of the SO kinetic model best 
depicted the sorption process of DB106 dye to the sorbent 
in comparison to other functional models. The sorption 
of DB106 dye to ZnO-NPs was indicative of a chemical 
sorption process, which elaborates the valency forces allo-
cation or exchange of electrons between the sorbent and 
sorbate (Eldeeb et al. 2022a, b; Jawad et al. 2022). Also 
exploring the sorption method of the DB106 dye to ZnO-
NPs using ID and FD kinetic models, it was discovered 
that the fitting lines of these models did not pass via the 
origin of their various plots (Fig. 14c,d), which showed 
that the rate-limiting step comprises of various paths such 
as external diffusion did not control the adsorption of 
DB106 dye molecules to ZnO-NPs. The values of R2 were 
comparatively close to 0.9 using 0.3 g/L of the adsorbent 
for both models but were moderately low by 0.2 g/L of 
the ZnO-NPs.

Isotherm model

To explain the sorption behaviour and get information 
about the mechanism of sorption, the isotherm models 
are applied (El Nemr et al. 2010; Aigbe et al. 2020a; 
Jawad et al. 2022). The Langmuir (LNR) and Freundlich 
(FRH) models were explored in this study to determine 
which model ideally described the removal of DB106 
dye molecules to ZnO-NPs sorbent. The various plot of 
these models is shown in Fig. 15. From the determined 
parameters in Table 7, the LNR was more suitable in 
describing the sorption of dye molecules to ZnO-NPs due 

to their determined high R2 value. The calculated opti-
mum sorption capacity (Qm) from LNR was 370.37 mg/g. 
The LNR dimensionless factor RL was assessed to be 
3.3 ×10−5 − 8.3 × 10

−6 using 10–40 mg/L dye concentra-
tion and the determined value of RL showed a favourable 
sorption process using ZnO-NPs for DB106 dye sorption. 
The adsorption process of DB106 dye ions to ZnO-NPs 
was owing to the monolayer sorption of DB106 dye ions 
to the consistent surface of the ZnO-NPs.

Comparison with other reported work in literatures

According to the comparison of various optimum sorption 
capacities for DB106 dye removal using different nanomate-
rials (Table 8), results show that ZnO-NPs can be employed 
as an effective sorbent for the sequestration of dye molecules 
from water medium.

Conclusion and recommendations

The aim of the current study was to reconsider and inves-
tigate the potential benefits of utilizing green synthesized 
ZnO-NPs for DB106 dye removal. The basis of this study 
was to show how to remove DB106 dye using more widely 
accessible NPs. Hence, this study reports on the use of 
green ZnO-NPs adsorbent for DB106 dye adsorption 
employing the batch adsorption method under varied cir-
cumstances in a water-soluble medium. The confiscation 
of DB106 dye to the green synthesized ZnO-NPs adsor-
bent was detected to be pH-dependent, with the optimal 
sorption of DB106 (anionic) dye particles observed at pH 
7. DB106 dye adsorption to the ZnO-NPs adsorbent was 
well-defined by means of the LNR and SO models, with an 
estimated Qm of 370.37 mg/g. The findings of the present 
study have proved the opportunity and capability of using 
inexpensive and green synthesis for ZnO-NPs fabrication 
for the capture of anionic dye particles such as the DB106 
dye. Therefore, it is recommended that further research 
be done to find new, less expensive, and more environ-
mentally friendly adsorbents that can be investigated and 
used to remove dyes and other harmful substances from the 
environment. Future studies should also focus on applying 

Table 7  The LNR and FRH models determined factors

Isotherm models Determined isotherm parameters 
(0.2 g/L)

LNR Qm (mg/g) 370.37
Ka ×  103 3000
R2 0.928

FRH Qm (mg/g) 280.0
Ka ×  103 529,541.5
R2 0.778

Table 8  Maximum sorption 
capacities comparison of 
various nanomaterials for the 
sorption of DB106 dye

Sorbents Qm (mg/g) References

Activated carbons developed from pomegranate peel 42.59, 54.05, and 
58.14

(Amin 2009)

Activated carbon from orange peel 107.53 (Khaled et al. 2009)
Oxidized multi-walled carbon nanotubes 500.00 (Sobhanardakani 

and Zandipak 
2015)

ZnO 370.37 This study



69679Environmental Science and Pollution Research (2023) 30:69666–69682 

1 3

smart techniques to develop a broad and precise association 
for the elimination of industrially hazardous composites 
such as dyes from the environment.
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