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Abstract
Climate change threatens African countries’ economic development and affects agriculture 
and food security. Ethiopia is especially vulnerable to the negative effects of climate change 
because its economy is dependent on climate-sensitive livelihoods that have limited poten-
tial for adaptation. Emerging evidence indicates that climate-smart agriculture (CSA) can 
help smallholder farmers adapt to climate change and increase agricultural productivity, 
thereby enhancing household income and food security. In the study area, different CSA 
practices have been adopted to mitigate the negative effects of climate change and improve 
agricultural productivity, income, and food security. Therefore, this study examines the 
impact of CSA practices on household income and food security in southern Ethiopia. A 
total of 385 households were selected using multistage sampling. Primary and secondary 
data were used, and propensity score matching with different types of matching algorithms, 
such as nearest neighbor, kernel, and radius matching, was employed to quantify the con-
ditional impacts of CSA intervention on farm income and food security. In comparison 
with non adopters farmers that have adopted CSA practices had a higher food consumption 
score between 6.27 and 8.15, which was statistically significant at the 1% level. Overall, 
34.55% of interviewed households had acceptable food consumption scores, 44.68% had 
borderline, and 20.77% had poor food consumption scores. Furthermore, households that 
adopted CSA practices had a 20.30% higher average annual farm income per hectare than 
non-adopters. The study suggests that effective extension services, accurate climate infor-
mation, and sound policy support are required to promote and scale up CSA measures in 
the study area to improve farmers’ adaptive capacity, farm income, and food security.
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1 Introduction

Climate change (CC) and variability continue to be major global challenges for humanity 
(Abdallah et  al., 2019; Hundera et  al., 2019; Pörtner et  al., 2022). The negative conse-
quences are especially dangerous for developing countries whose economies rely on cli-
mate-sensitive livelihoods with limited adaptation capacity (Asfaw et al., 2021; Zougmoré 
et al., 2021). For example, the Fifth Assessment Report of the IPCC’s Working Group II 
(Edenhofer, 2015) stated that the effects of climate change are expected to exacerbate pov-
erty in most low-income countries. This is especially true for rural Africa where people 
face hunger and food insecurity (Crippa et al., 2021). Climate change has already harmed 
African agriculture and food security (Njeru et  al., 2016). According to scientific evi-
dence, a comprehensive approach is required to successfully develop agricultural systems 
that foster adaptation and mitigation (Crippa et al., 2021). Most African countries rely on 
agriculture as their primary economic activity, which is characterized by an overreliance 
on rainfall and primarily practiced by smallholders with low input use (Mekonnen et al., 
2021). Furthermore, a poor land tenure system, low soil fertility, a lack of extension ser-
vices, extreme weather, land degradation, the COVID-19 pandemic, and rising conflicts 
exacerbate the situation (Giller et al., 2021; Issahaku & Abdulai, 2020; Zougmoré et al., 
2021). Thus, increasing farmers’ awareness of climate change and implementing innova-
tive adaptation measures are critical for mitigating the negative effects of climate change 
(Khonje et al., 2018). High levels of poverty, food insecurity, and low productivity in Sub-
Saharan Africa, including Ethiopia, are largely driven by low levels of agricultural technol-
ogy adoption and CC-related impacts (Stuch et al., 2021).

Available scientific evidence shows that in response to CC impacts and to ensure 
agricultural productivity, poverty reduction, and achieve food security, a mix of agricul-
tural practices, such as soil and water conservation measures, agroforestry, and irrigation 
schemes, have been employed by Ethiopian smallholder farmers (Di Falco & Veronesi, 
2018). Additionally, a multi-stakeholder approach involving extension agents, practitioners, 
policymakers, scientific communities, and other pertinent actors is necessary for the effec-
tive development of agriculture toward a climate-smart approach. By adopting climate-
smart agriculture (CSA) practices, improving food security and household income, and 
reducing carbon emissions, the Climate Resilient Green Economy strategy document aims 
to address critical CC challenges. Furthermore, to mitigate the negative effects of climate 
change on agricultural production, the Ethiopian government launched a massive campaign 
to promote cereal crop row-planting through the Agricultural Transformation Agency, in 
which approximately 2.5 million farmers participated (Fentie & Beyene, 2019). However, 
farmers may lack sufficient information about the nature of new climate extremes, the 
resulting problems, and the climate-smart technologies required to deal with them effec-
tively. Consequently, their responses may be inadequate, ineffective, or unsustainable.

In light of this, the CGIAR Research Program on Climate Change, Agriculture, and 
Food Security (CCAFS), in collaboration with other stakeholders, has been working with 
farmers in East Africa to test and promote a portfolio of technological and institutional 
CSA options to deal with climate change in agriculture through the climate-smart villages 
(CSVs) approach and to scale the right options (Ogada et al., 2020). The CSVs approach 
has clearly demonstrated its effectiveness in scaling up climate-smart agriculture practices 
(Aggarwal et  al., 2018). According to Aggarwal et  al. (2018), between 2012 and 2020, 
CSV-related outcomes  were reported across five CCAFS regions: Southeast Asia (16), 
South Asia (14), East Africa (12), West Africa (12), and Latin America (10). The adoption 
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rate of improved agricultural technology, performance, and productivity in Ethiopia’s 
agriculture sector remains inadequate due to a lack of information on the technicality of 
available agriculture technologies and an insufficient supply of inputs (Berha, 2022; Suri 
& Udry, 2022; Yu & Nin-Pratt, 2014). A recent study found that CSA practices, such as 
improved crops, are being used in Africa to increase household income and food security 
(Ogunyiola et al., 2022; Suri & Udry, 2022). CSA incorporates three dimensions of sus-
tainable development (social, economic, and environment) and focuses on increasing agri-
cultural production and community resilience and, if possible, reducing carbon emissions. 
For example, Aggarwal et al. (2018) reported that adopting CSA practices increases agri-
cultural productivity, which can improve household income and food and nutrition secu-
rity. However, empirical research on the impact of CSA practices on smallholder farmers’ 
income and food security in Ethiopia is insufficient.

Previous studies assessed the effects of CSA practices and technology in Africa in 
reducing the negative effects of climate change and improving agricultural productivity, 
income, and food security. Studies examining improved livestock production in Kenya 
(Ogada et al., 2020) manure composting in Tanzania (Pamuk et al., 2021), improved maize 
in Zambia (Khonje et al., 2018), improvements in wheat and sorghum production in Ethio-
pia (Wake & Habteyesus, 2019), silkworm breeding in Rwanda (Habiyaremye, 2017), and 
soil and water conservation in Somalia (Nyirahabimana et al., 2021) yielded mixed results. 
For example, Ogada et al. (2020) demonstrated that the adoption of small ruminant live-
stock breeds reduces farmers’ income. In contrast, Wake and Habteyesus (2019) discovered 
that adopting CSA practices outpaces traditional farming systems through building resil-
ience and reduce the negative effects of climate change on agricultural production. Further-
more, research on the impact of CSA practices, particularly on income and food security 
in Ethiopia, has been limited due to the observation that adoption intervention is location-
specific (Khoza et al., 2021; Zerssa et al., 2021). The current study aims to bridge this gap 
in the literature by conducting a focused investigation into the impact of CSA practices 
on income and food security. In this regard, studies have revealed that CSA intervention 
in Ethiopia, its impact on local livelihood systems, and the factors influencing CSA adop-
tions are poorly understood and documented (Fentie & Beyene, 2019; Issahaku & Abdulai, 
2020; Mekonnen et al., 2021; Zerssa et al., 2021). Recent studies have examined factors 
influencing CSA adoption, such as access to climate information, scarcity of agricultural 
inputs, lack of institutional support, poor extension services, and inappropriate technol-
ogy (Ogada et al., 2020; Partey et al., 2018; Zerssa et al., 2021). Furthermore, information 
asymmetry or a knowledge gap may explain the lower CSA adoption rate and its impact 
on household livelihoods (Asfaw et al., 2021; Ullah et al., 2020). In theory, CSA steadily 
increases agricultural productivity, strengthens farmers’ resilience to climate change, and 
reduces greenhouse gas emissions wherever possible (Njeru et al., 2016). Evidence from 
various East African countries suggests that smallholder farmers’ adoption of CSA prac-
tices increases agriculture’s ability to adapt to climate change and improves the well-being 
of farm households (Bazzana et al., 2022). Several CSA practices have been implemented 
in the study area to mitigate the negative effects of climate change and increase agricultural 
productivity. Thus, this study employs quantitative evidence from a cross-sectional survey 
dataset due to inconsistent findings in the empirical literature and a lack of CSA informa-
tion on the study area.

The study adds to the existing literature by offering valuable baseline data for further 
investigation and policy intervention into CSA practices in the Southern region of Ethio-
pia. The remaining sections of the paper present our methodologies, results and discus-
sions, and conclusions and policy implications.
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2  Conceptual/theoretical framework of the study

Recent studies show that potential risks and uncertainty influence the adoption of new 
agricultural practices and technologies (Mugabe, 2020; Bazzana et al., 2022). Agricultural 
technology is a broad concept encompassing equipment, genetic material, farming tech-
niques, and agricultural inputs developed to improve agricultural efficiency. Agricultural 
technology adoption theory is a multidisciplinary field that attempts to explain why some 
farmers accept new technologies while others do not by combining elements of decision 
theory and the diffusion of the theory of innovation (Ruzzante et al., 2021). According to 
expected utility theory assumptions, farmers that make a utility maximization decision to 
adopt new agricultural technology, such as CSA practices, based on the risks and poten-
tial uncertainties are also subject to farm input constraints (Jaeger, 2007; Mercer, 2004). 
The decision to maximize utility or profit is a function of farmers’ preferences or selection 
from available alternatives, which include CSA practices and technologies (Marra et  al., 
2003; Wens et al., 2021). Adoption theory demonstrates that farmers’ resource allocation 
decisions for different agricultural practices are subject to maximizing the expected util-
ity of food and income by selecting specific CSA practices under risks and uncertainties 
(Maina et al., 2020). In this study, for example, smallholder farmers expect benefits or utili-
ties from adopting CSA practices that maximize their income and food security (Sardar 
et al., 2021). Smallholder farmers adopt new agricultural practices and technology if the 
expected utility or benefits from adoption (Ua) are substantially greater than those from 
non-adoption (Un) (Kassie et al., 2015; Ngoma et al., 2021). Following Wooldridge (2010) 
and Greene (2000), we derived the utility function from the adoption of CSA with dichoto-
mous choices, which are determined by the given observable and unobservable characteris-
tics of Zi and error term εi, such that:

where Ii represents a binary choice variable for CSA adoption, which equals 1 if the farm-
ers I adopt the CSA practices, and 0 otherwise. β represents the coefficient of the vector 
parameters to be estimated, Zi represents socioeconomic characteristic of the farmers, and 
εi is the error term. Therefore, farmers adopt CSA practices if Ii = Ua − Uu > 0. Hence, the 
probability of households’ adoption of CSA practices and technology would be quantified 
as follows:

where (Ii = 1) represents the probability of CSA adoption, and D is the cumulative distribu-
tion function for the error term (εi), which differentiates the types of model used for esti-
mation (Greene, 2003).

Adoption of CSA is critical for improving farmer welfare in the face of CC threats (Boz 
& Shahbaz, 2021; Sardar et al., 2021). Adopting CSA practices and technology can assist 
smallholder farmers in achieving food security, increased income, and poverty reduction. 
According to recent research, increasing agricultural yield can improve farmers’ well-being 
by increasing household income and food security (Hussain et  al., 2022; Musafiri et  al., 
2022; Ogada et al., 2020; Ogunyiola et al., 2022; Warinda et al., 2020).

Given the aforementioned theories and assumptions, the conceptual framework of 
this study is constructed, which consists of four main components: (1) CC/variabil-
ity and its effects; (2) adoption of CSA; (3) crop yield increment; and (4) household 
income and food security. The conceptual framework follows top-down and bottom-up 

(1)I∗i = 𝛽Zi + 𝜀i, Ii = 1 if I∗ > 0 and 0 otherwise

(2)Pr
(
Ii = 1

)
and Pr (I∗I > 0) = 1 − D

(
𝛽Zi

)
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approaches (Fig. 1 Straight lines with positive and negative signs show the positive and 
negative effects that one part of the framework has on the other parts of the framework, 
respectively). Due to their vulnerability to climate-related risks and limited capacity for 
adaptation, smallholder farmers’ livelihoods are negatively impacted by climate change 
and variability (Ogada et al., 2020).

Smallholder famers can reduce climate-related impacts by adopting CSA practices 
and technology (Warinda et al., 2020). Farmers’ intentions to use CSA practices depend 
on how well they understand and know about climate change and how vulnerable they 
are (Sardar et  al., 2021). Hence, the effective and timely adoption of CSA practices 
in farming depends on knowledge and perception regarding CC and its impact (Boz 
& Shahbaz, 2021). In addition, the intention of farmers to adopt available CSA prac-
tices is influenced by experience, knowledge, skills socioeconomic and intuitive sup-
port, infrastructure, and sound policies (Ruben et al., 2019). In this study, we consider 
a rational farm household that adopts CSA measures to offset climate-related agricul-
tural losses. A farmer’s adoption of CSA practices not only decreases climatic risk but 
also enhances crop productivity and farm income by increasing crop production. The 
benefits of CSA adoption have a direct positive effect on farmers’ income growth and 
mitigate the adverse effects of CC and variability (Hussain et  al., 2022). In addition, 
Ogunyiola et al. (2022) showed that farmers’ adoption of CSA practices tends to reduce 
climatic risk, increase crop productivity, improve household income, and meet farmers’ 
food consumption needs.

Conversely, if farmers choose not to adopt CSA or adopt conventional farming, it may 
increase risks by making them more vulnerable to climate change and may affect the farm 
income by lowering crop yields per hectare (ha) (Sardar et al., 2021). Adapting CSA prac-
tices can help smallholder farmers increase their crop income and food security while 
mitigating losses and damages caused by climate change (Musafiri et  al., 2022; Sedebo 
et al., 2022). As a result, the study’s conceptual framework is based on CC, its implications 

Climate 
vulnerability 

Erra�c rainfall, rising 
temperature, drought, 
flooding, crop &livestock 
disease 

Adop�on of CSA prac�ces 
(influenced by socioeconomic, 
intui�onal and sound policies)

Crop yield 
Income and food security 
improved due to increase 
crop yield and adapta�on 
to CC impacts 

Income and food 
security reduced  

If noIf yes

No adop�on 

Climate change 
and variability 

Decision 
to adopt 

Fig. 1  Conceptual formwork of the study. Source: Adopted from Sarda et al. (2021)
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for farmers’ agricultural practices, and the direct impact of CSA adoption on household 
income and food security.

3  Methods

3.1  Description of the study area

This study was conducted in the Doyogena district of the Kembata Tembaro Zone located 
in the Southern Nations Nationalities and Peoples Region of Ethiopia (Fig. 2). The topog-
raphy is steep, so the area is mostly classified as highland. The steep nature of the land-
scapes, combined with extreme flooding, causes high soil erosion and soil fertility loss, 
thus reducing agricultural production and productivity (Belay et al., 2021). The area has 
a total population of more than 116,000 people, and crop and livestock production is the 
farmers’ main income source. Crop production alone accounts for roughly 60% of house-
hold income, with livestock production accounting for the remainder (Mathewos et  al., 
2021). The study area was described in detail by Belay et al. (2022).

3.2  Sampling design and data collection techniques

In choosing sample households, the study used multistage sampling techniques. In the first 
stage, the Southern region of Ethiopia, particularly Doyogena district, was selected due to 
its transition from conventional to CSA practices. Two sites, Lemisuticho and Begedamo 

Fig. 2  Study area map. Source: Author’s own work
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kebele, from the district were selected in the second stage, and these two sites are assumed 
to have similar topography, planting and harvesting seasons, and crop and livestock liveli-
hood systems. In the third stage, eight villages were randomly selected with the help of 
extension workers and peasant association leaders. Four villages from the Lemisuticho 
kebele, namely, Tula, Suticho, and Cherema Kanko, and four villages from the Begedamo 
kebele, namely, Gateme, Bakucho, Tach-begedamo, and Lay-begedamo, were selected. 
These villages represent areas where CSA and conventional agriculture practices are being 
practically implemented. The sample households were selected from each village propor-
tional to the sample size using the rand between function in Microsoft Excel (Mesfin et al., 
2020).

Meanwhile, using Cochran’s formula (Heinisch, 1965), this study selected 385 house-
holds from 10,267 sampled populations, with 80.5% male and 19.5% female respondents.

where n indicates the sample size for the study p = estimated variance in the population, 
q = 1 − p, Z = Z-score at the desired confidence level, e is the acceptance error (5%) at 95% 
level of confidence, and Z = 1.96.

The household survey was administered by research assistants and enumerators 
who were fluent in the local language and had participated in the prior interview exer-
cise. Focus group discussions, key informant interviews, semi-structured questionnaire 
surveys, and direct observation were used to collect quantitative and qualitative data 
(Creswell & Creswell, 2017). Before actual data collection, the questionnaire and check-
list were pretested to ensure that they were correct and valid. Prior to interviewing the 
sample households, 32 non-sample households were identified and interviewed to pretest 
the questionnaire. This allowed restructuring the questions before extensive data collection. 
The questionnaires and checklists were then amended and enriched for the actual inter-
view based on the constraints identified in the pretest. This was critical to capture farmers’ 
understanding of the questions and obtain accurate information.

The information contained in the data collected from primary and secondary sources 
included socioeconomic characteristics of the farmers, CC conditions, farmers’ income 
sources, and food security. Farmers’ income data were gathered using the expenditure 
method that is less sensitive to measurement than direct annual estimation. Farmers were 
asked, “What have been your monthly expenses for food, agriculture inputs, medication, 
closing, and so on?” In this case, the basic needs approach was used to estimate farmer 
expenditure, which was aggregated from food (measured over a week and then multiplied 
by 4.1 to convert to monthly food expenditure) and non-food expenditure for essential 
products estimated monthly. Furthermore, the estimated monetary value of food and non-
food expenditures is calculated using consumer price index data obtained from the Cen-
tral Statistical Services (Battistin, 2003; Deaton, 1997; Kanu & Okezie, 2021). Secondary 
data were also gathered from a variety of sources, including published articles and policy-
related working documents.

3.3  Analytical framework and model specification

Agricultural investment using new farming technologies looks attractive to smallholder 
farmers if they perceived that the benefits outweigh the costs. The farmers’ decision to 
adopt CSA practices may be viewed as constrained optimization if the practices are either 

(3)n =
Z2pq

e2
=

(1.962)(0.5)(0.5)

(0.05)2
= 385 house holds
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available, affordable, or advantageous. Smallholder farmers are assumed to be rational in 
adopting CSA practices that meet their needs and enable them to overcome the challenges 
posed by climate variability in their farming endeavors. In this study, household income 
and food security were used to evaluate the impact of CSA practices and technologies. 
The household’s income was derived from on-farm (crop-livestock) and off-farm sources, 
including remittances, self-employment income, agricultural income, and non-agricultural 
wages (Bojnec & Knific, 2021).

Household food security is a condition in which all household members have access to 
sufficient, nutritious, and safe food to meet their dietary needs at all times (Tendall et al., 
2015). Food Consumption Score (FCS) was found to be an effective indicator for measur-
ing the number of food groups consumed in a household during a given reference period, 
as frequently employed by the World Food Program (Mujeyi et al., 2021). The FCS is used 
extensively to indicate dietary diversity when assessing food security. It is computed based 
on the frequency of weighted dietary diversity of households consuming eight food groups 
(i.e., cereals, pulses and nuts, vegetables, fruits, meat and fish, dairy products, sugar_honey 
and oil fat_butter and other condiments) with a 7-day recall from the date of survey data 
collection. The consumption frequency is then summed to give the food group score, and 
each group score is multiplied by the weights of each nutrient density of the given food 
group to create the FCS (Carletto et al., 2013), as shown in the following:

where FCS is food consumption score, yi represents different food groups, i is the weight 
of the nutritional value of each food group, and fi is the consumption frequency of food 
groups that the households consumed within the last 7 days.

Adopting CSA options help farmers increase food supply availability and generate more 
income. Smallholder farmers decide to adopt a new farming strategy in this process and 
estimating the impact of such adoption intervention is critical (DiPrete & Gangl, 2004). 
To estimate the impact of CSA adoption on household income and food security outcome 
measures, this study used the propensity score matching (PSM) method (Brüssow et al., 
2017; Khonje et al., 2015). Previous studies used PSM to compare the outcomes of indi-
vidual farm households with their counterfactual by controlling for observable farm char-
acteristics and self-selection bias to solve matching problems and estimate the average 
treatment effect (ATE) of technology adoption (Brüssow et al., 2017; Rosenbaum & Rubin, 
1983). PSM estimation helps investigate the impact of CSA adoption under the assump-
tions of conditional independence (unobserved factors cannot influence CSA adoption) and 
common support (propensity score overlaps among adopters and non-adopters) (Maina 
et al., 2020).

In pre-treatment observable characteristics, the PSM approach is used to find a simi-
lar group of farmers who have adopted the available CSA options and compare them to 
other similar farmers who have not adopted any CSA options. After controlling for the 
pre-treatment observable characteristics associated with CSA adoption, we confirmed that 
adopters and non-adopters have similar outcomes as non-adopters would have had they 
adopted CSA. This study’s outcome variable includes income and food security. The out-
comes (food security or household income growth) of individual farmers who participated 
in CSA practices (y1) are compared with that of similar farmers who did not participate in 
CSA adoptions (y0), which serves as the basis for the ATE.

The average gain from the result of program participants (treatment group) versus non-
participants (control group) can be introduced as follows:

(4)FCS =
∑

yifi
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where Yi is the outcome for individual i, Ti is the treatment dummy variable, Yi (1) repre-
sents an outcome of individual under treatment, and Yi (0) is an outcome of individual who 
is nonparticipant.

PSM constructs the statistical comparison group based on the likelihoods of partici-
pating in the treatment (in our case, adoption of CSA practices), conditional on vari-
ables (covariates) that are thought to affect treatment participation and can be expressed 
as follows:

Food security and gross household income are the study’s outcome variables, which 
measures the effects of CSA adoptions. The outcome of farmers who adopted CSA 
practices in response to the perceived effects of CC is contrasted with those of farmers 
who did not adopt any CSA measures; these two groups are assumed to be not differ-
ent systematically besides CSA adoption. In this regard, the ATE on treated (ATT) and 
untreated (ATU), respectively, measures the changes in the outcomes of the treatment 
and control groups (food security or household income) after matching.

Therefore, the ATT is the difference between with and without treatment, which is 
given by:

Two presumptions, that is, common support condition and conditional independ-
ence, underlie the validity and satisfaction of the PSM estimation outputs (Rosenbaum 
& Rubin, 1983). The conditional independence or unconfoundedness assumption states 
that the potential outcome is independent of treatment status and used to establish an 
unbiased counterfactual for the treatment group after controlling the set of Xi observ-
able covariates (Wake & Habteyesus, 2019). The equation can be expressed as follows: 
(Yi

T, Yi
C)┴Ti|Xi*. Then, we obtain:

where Yi
T is the outcome of an individual on treatment, Yi

C is the outcome of an individual 
on control, Xi* is the covariate, and ┴ is the independence. Meanwhile, the assumption of 
common support certifies that as overlapping between treated and untreated groups is suf-
ficient, acceptable matches can be obtained. The equation is given as 0 < 

It guarantees that the comparison observation is close to the treatment observation in 
the propensity score distribution. According to Rosenbaum and Rubin (1983), the treat-
ment assignment is intended to be strongly ignorable if the presumptions are true. In 
principle, PSM estimation consists of two stages. The first stage is based on the whole 
sample and a binary outcome model, which is a probability conditional on the charac-
teristics of the households, with a binary treatment variable. This stage also reduces 
section bias using a matching algorithm as a robustness check (Caliendo & Kopeinig, 
2008). Based on the observable characteristics X, PSM calculates farmers’ likelihood 
to participate in CSA practices. It then generates the propensity score P(X) by creating 

(5)ATE = E
(
Yi(1)|Ti = 1

)
− E

(
Yi(0)Ti = 1

)

(6)P(X) = Pr (T = 1|X)

(7)ATT = E(Y1|T = 1) = +E[(Y1|T = 1)] − E[Y(0)T = 1]

Yi(1) = YT
i
and Yi(0) = YC

i

P(T = 1|X) < 1.l
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comparison matching groups with comparable propensity scores, and unmatched units 
are eliminated from the model (Caliendo & Kopeinig, 2008).

Different matching algorisms commonly used in PSM estimation include nearest neigh-
bor matching (NNM), Kernel-based matching method, radius matching, and caliper match-
ing. In the second stage of PSM, the impacts of CSA adoption on the average outcome 
variables (food security and income) were determined, and the ATT was estimated. The 
NNM method is used to pair participant households with nonparticipant households based 
on their propensity score distance. However, the NNM faces bad matches if the propensity 
score distance between two neighbors is large. This can be avoided by imposing a toler-
ance level on the maximum propensity score, and caliper matching with 0.1 restrictions 
was specified for common support conditions (Smith & Todd, 2005). The kernel matching 
method constructs the counterfactual outcome and produces the ATE on the treated using 
the kernel weighted average of the farmers in the adopter group.

The key capability of PSM estimation is controlling selection bias, which is depend-
ent on two conditions: the balancing performance of the given covariates and the absence 
of systematic household heterogeneity due to the household’s unobserved characteristics 
(Caliendo & Kopeinig, 2008). The balancing test in PSM estimation assumes that it will 
balance the variable distribution, reduce bias, and eliminate potential differences in the 
given covariates (Rosenbaum & Rubin, 1983). Moreover, the PSM addresses the system-
atic difference due to observable characteristics among households in two ways: first, by 
estimating the probability of propensity score for each observed characteristic using the 
logit or probit model, and second, by matching each adopter with non-adopters who have 
the same propensity score value to estimate the ATT.

Aside from PSM, different approaches, including switching regression, condi-
tional Ricardian model, fixed effect generalized least square, the difference in different 
approaches, two-stage least square methods, and Heckman logit model, have been used 
in the recent literature to estimate the unbiased ATT in terms of income and food security. 
The Heckman selection model was employed to resolve the possible correlation between 
observed covariates and selection bias (Asrat & Simane, 2017). Furthermore, the Rosen-
baum bound test could address unobservable hidden bias (Heckman & Navarro-Lozano, 
2004; Rosenbaum, 2002). The testing procedure entails changing the bound on the sig-
nificance level at the ATT under the given assumption of self-selection into CSA adoption, 
which allows identification of the critical level of ATT estimation that would become insig-
nificant (Caliendo & Kopeinig, 2008). Following Sardar et al. (2021), this study estimates 
the ATEs by comparing the expected crop income and FCS of CSA adopters and non-
adopters (i.e., counterfactual outcomes). The variable description and measurement used in 
the model are available in Appendix 3.

4  Result and discussion

4.1  Descriptive statistics

Table 1 provides a summary of the variables included in the empirical study, which were 
chosen based on the relevant literature. The descriptive statistics indicate that socioeco-
nomic variables have significant mean variation between CSA adopters and non-adopters. 
Variables, such as landholding size, education, soil fertility, slope of farm plot, frequency 
of extension, training received, social membership, total livestock unit climate perception, 
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and farmers’ willingness to take risks with new agri-technologies, exhibit significant differ-
ence between adopters and non-adopters of CSA practices. The average level of education 
of CSA non-adopters and adopters is approximately 2 and 4 years, respectively. Farmers 
with a higher level of education are more likely to adopt new agricultural technologies 
(Fentie & Beyene, 2019). In comparison with non-adopters, CSA adopters are perceived 
to be more aware of CC and willing to adopt new farming technologies on their farms. 
Moreover, the average demand for family members in the labor force is 4.33 for adopters 
and 3.25 for non-adopters. The difference between CSA adopters and non-adopters regard-
ing labor demand is statistically significant. According to Asfaw et al. (2012), agricultural 
practices are naturally labor intensive, and improving agricultural technologies require 
skilled labor.

The perceived soil fertility status indicated that CSA adopters are more likely to have 
more fertile cultivated land than non-adopters. Anang et al. (2021) and Mwongera et  al. 
(2017) indicated adoption of improved agricultural technologies, such as soil and water 
conservation with biological measures, agroforestry systems, and residue incorporation 
(wheat/barely), increases the soil water holding capacity, soil fertility, and carbon seques-
tration potentials.

In this analysis, the outcome variables are household income and food security status, as 
measured by the FCS. The gross household income and FCS variables reveal a statistically 
significant (1%) difference between CSA adopters and non-adopters. Regarding the food 

Table 1  Summary and descriptive statistics of the variables included in the model

The numbers in parenthesis are standard errors. *, **, and *** represent the level of significance at 10%, 
5%, and 1%, respectively. At the time of the survey year 2020, 1 USD = 37.35 Ethiopian Birr (ETB)

Variables Non-adopters mean (SD) Adopters mean (SD) p-value

HH crop income log (in ETB) 9933.91 (828.13) 15,209.41 (986.83) 0.002***
HH_FCS (food consumption score) 36.40 (0.434) 43.70 (0.416) 0.001***
Age (years) 52.06 (1.18) 49.41 (0.83) 0.200
Education (years) 2.84 (0.22) 4.55 (0.36) 0.050**
Family size 7.77 (0.19) 7.21 (0.15) 0.130
Labor 3.25 (0.24) 4.33 (0.16) 0.050**
Gender (1 = Male) 0.79 (0.03) 0.81 (0.02) 0.360
landholding size (hectare) 0.54 (0.03) 0.65 (0.03) 0.025**
Farming experience (years) 26.72 (1.24) 25.02 (0.80) 0.320
Distance to output market (km) 0.82 (0.03) 0.89 (0.02) 0.210
Access to climate information (1/0) 0.07 (0.03) 0.86 (0.03) 0.023**
Soil fertility (1/0) 0.63 (0.03) 0.78 (0.02) 0.012**
Slop of_farm plot (1/0) 0.56 (0.04) 0.57 (0.032) 0.130
Number of extension contacts (frequency) 2.02 (0.06) 5.78 (0.06) 0.053*
Training received (1/0) 0.58 (0.04) 0.82 (0.02) 0.005**
access credit (1/0) 0.27 (0.03) 0.28 (0.02) 0.232
Social membership (1/0) 0.66 (0.015) 0.94 (0.014) 0.025**
TLU 2.46 (0.13) 4.46 (0.13) 0.023**
CC perception (1/0) 0.67 (0.021) 0.87 (0.022) 0.001***
CSA adoption _risk (1/0_ 0.42 (0.04) 0.72 (0.02) 0.000***
rainfall_var (coefficient of variation) 1.73 (0.07) 2.02 (0.09) 0.001***
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consumption score, farmers who have adopted CSA practices tend to have a higher FCS 
than their counterparts, with mean FCS values of 36.40 and 43.70 for adopters and non-
adopters, respectively. Similarly, farmers who have adopted CSA practices have a higher 
average annual gross income than their counterparts, with a mean annual gross income of 
9,933.91 ETB (1  USD = 37.35 ETB) for non-adopters and 15,209.41 ETB for adopters. 
The t-test result indicated a significant difference between adopters and non-adopter for 
both FCS and annual crop income.

During the focus group discussion (FGD) and key informant interview (KII), farmers 
were asked a broad question on their feelings about climate change and variability. The 
replies were used to assess farmers’ perceptions. Participants were asked to provide evi-
dence of the climate change and variations they had noticed or experienced over the last 
three decades in the follow-up questions. Most farmers who participated in FGD agreed 
that climate change is already occurring and mentioned how it affects their farming. The 
findings are consistent with those of a study conducted in Ethiopia’s Central Rift Val-
ley, which indicated that 90.3% of respondents are well-versed in the meaning of climate 
change (Hundera et al., 2019). Farmers’ responses to climate change and its impacts were 
sometimes inconsistent, and they were repeatedly asked to substantiate their response about 
the term “climate change.” The KII from Lemisuticho kebele, who has lived in the area for 
about 35  years, claimed that 20  years ago, the amount of rainfall was relatively normal 
and sufficient for planting. However, in the last 10 years, the duration and number of rainy 
seasons like “belg” (small rainy season) and “meher” (harvesting season) have got shorter 
and less predictable. In terms of temperature change, a key informant stated that tempera-
tures have risen over the last two decades. Furthermore, as temperatures have risen, several 
water springs have dried up and the amount of water in local rivers has become insufficient 
as compared with the previous two decades. A farmer participating in the KII noted that 
over the last 5–10 years, the rainfall pattern has been unpredictable and short, with either 
early or late start rainy seasons. Meanwhile, more dry spells and longer droughts have been 
observed in the study area (Belay et al., 2021). Hence, farmers’ awareness and perceptions 
regarding climate change were consistent with the metrological observations of rainfall and 
temperature trends in the study area (Belay et al., 2021).

Application of CSA practices at the farm level is context-specific and depends on 
resources availability, institutional factors, and the severity of CC conditions (Keshavarz 
& Moqadas, 2021). The common CSA practices strategies adopted by the farmers in the 
study include soil and water conservation with biological measures, crop rotation (cereal/
potato), improved crop varieties (high yielding beans, potato wheat), agroforestry systems 
(wood perennials crops), improved breeds (small ruminants), and residue incorporation 
(wheat/barely).

Adopting CSA practices boosts agricultural productivity, raises household income, 
strengthens farmer resilience, and slows CC (Lipper et  al., 2014). Tadesse et  al. (2021) 
conducted research in the same study area on the effect of CSA adoption on soil fertility 
status, crop yield, and soil carbon between CSA adopters and non-adopters using different 
soil fertility indicators such as total nitrogen (TN), soil organic carbon (SOC), and plant-
available phosphorus. The findings show that the adopters’ farm plot’s soil fertility was sig-
nificantly higher (p < 0.05) than that of the non-adopters in the current study area (Tadesse 
et al., 2021). Tadesse et al. (2021) added that SOC, TN, and phosphorus content in the soil 
were 2.8–3.1, 2.2–2.6, and 1.7–2.7 times higher under CSA practices than under conven-
tional farming, respectively. Wheat yield production under CSA intervention increased by 
30–45% compared with conventional farming and significant at p < 0.05, given the soil fer-
tility indicators. Tadesse et al. (2021) added that CSA intervention was carried out across 
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various landscapes (forest, crop, and agroforestry) in the current study area. The SOC 
stock was measured at a depth of 1 m at both adopters and non-adopters, and the results 
show that SOC stock increased under forestland, grassland, cropland, and agroforestry by 
3.2%, 4.6%, 5%, and 6.9%, respectively, compared to conventional farming. Agroforestry 
landscapes had the highest SOC stock (312 Mg C  ha−1), followed by cropland landscapes 
(229 Mg c  ha−1).

Previous research indicates that effective CSA adoption at the farm level necessitates 
productive labor and financial resources that farmers can access, and the ability to com-
bine the resources and implementation (Cinner et  al., 2018; Kangogo et  al., 2021). Fol-
lowing the adoption of CSA practices, farmers in both the adopter and non-adopter groups 
were asked about their selective farm management practices and frequency of application 
(Fig.  3). The results of selected farm management practices (Fig.  3) highlight that CSA 
practices necessitate a greater frequency of farm management practices and commitment 
than conventional farming systems. This finding is consistent with Atitianti et al. (2018) 
and Kangogo et  al. (2021), who found that effective CSA adoption at the farm level 
requires productive labor and resource mobilization.

Agriculture is the main source of income in rural communities, and raising agriculture 
production through CSA practices increases household income and food security (Lip-
per et  al., 2014). Farmers in the study area used multiple agricultural techniques and an 
approach to income diversification. Innovative agricultural practices directly and indirectly 
enhance household livelihood outcomes. Examples of the direct effects are high crop and 
livestock production and a reduction in the cost of production, which improves income 
and food security. Meanwhile, an increase in food supply that enhances food availability 
in markets is one indirect effect of innovative agricultural practices. It may be necessary to 
increase labor demand to increase agricultural labor wages and thus, increase agricultural 
productivity. The main sources of income for farmers in the study area include farm crops, 
livestock, tree, and other off-farm means (Fig. 4). Crop selling was the primary source of 
income and means of subsistence for about 64.71% of farmers. Moreover, farmers in the 
study area have been producing livestock production like improved breeds (e.g., small 
ruminants). After crop sales, farmers reported that livestock sales are their second-largest 
source of income. The outcome is consistent with the findings of Brüssow et al. (2017), 
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who studied the impact of Tanzanian farmers’ adoption of the CSA strategy on food secu-
rity, and Wordofa et  al. (2021), who explored the contribution of agriculture to dietary 
diversity in Ethiopian households.

The effects of improved agricultural practices on dietary diversity were analyzed based 
on crop production and FCS indicators. Farmers in the region under study produce and 
consume various foods. Figure 5 depicts the percentage of households that fall into various 
food consumption categories. Household’s FCS measures its dietary diversity by multiply-
ing the frequency of each food group by an assigned weight, resulting in a weighted group 
value (Maxwell et al., 2014). Sampled households were categorized into poor, borderline, 

64.71%

16.81%

3.782%

14.71%

farm crop selling livestock selling
wood/tree selling other off farm income

Fig. 4  Farmers’ sources of income in the study region
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and adequate food consumption categories based on their calculated FCS between CSA 
adopters and non-adopters. Of the total household, 22.34% of adopters and 12.21% of non-
adopters were found in acceptable food consumption categories. In addition, 31.17% of 
adopters’ households and 13.51% of non-adopters’ households had borderline scores for 
food consumption. Meanwhile, 8.30% of households in the adopters group and 12.47% of 
households in the non-adopters group had poor consumption scores. Overall, the average 
FCS among CSA adopters and non-adapters was statistically significant at the 1% prob-
ability level (p < 000). The result is consistent with the findings of Aweke et  al. (2020) 
and Teka and Lee (2020), who reported that improved agricultural practices contribute to 
household welfare in Ethiopia.

4.2  Estimation of propensity score and matching

The STATA statistical package version 14.2 was used for the empirical analysis, and the 
propensity matching process was carried out by specifying the propensity scores for treat-
ment variables. A binary logit model was used to forecast the likelihood of CSA adoption. 
The overlapping condition and balancing proclivity were established and met. Based on 
the minima and maxima criteria, the predicted propensity scores for adopters ranges from 
0.108 to 0.987 with a mean of 0.729. Meanwhile, the predicted propensity score for non-
adopters ranges from 0.010 to 0.896 with a mean of 0.439. Thus, the common support con-
dition was satisfied in the region [0.108, 0.896], and 68 observations were located outside 
the common support region. In other words, households with a propensity score less than 
0.108 and greater than 0.896 were excluded from consideration for the matching condition.

The NNB, RM, and KM matching algorithms were used to estimate the effect of CSA 
adoption on household income and food security. Table 2 shows the estimated results of 
the logit specification of the propensity scores. As shown in Table  2, education, family 
size, family labor, landholding size, livestock ownership, and perceived soil fertility sta-
tus are likely to influence the adoption of CSA practices. Access to climate information, 
annual contact with extension services, climate perceptions, and farm training received are 
likely to facilitate the adoption of CSA practices. The findings are consistent with previous 
research on farm-level adaptation to CC in the Ethiopian highlands (Gebrehiwot & Van 
Der Veen, 2013), the adoption of CC adaptation strategies by maize-dependent smallhold-
ers in Ethiopia (Bedeke et  al., 2019), CC and farmer adaptation in Sub-Saharan Africa 
(Kalimba & Culas, 2020), and adoption determinants of multiple CSA technologies in 
Zimbabwe (Mujeyi et al., 2021).

The common support condition is executed in the estimation by running matching tech-
niques in the common support region. Figure 6 shows the distribution and common support 
propensity scores before and after matching. When the following criteria are satisfied, it 
is deemed that the matching exercise was successful: There should not be any systematic 
differences in the distribution of the covariates between matching groups; a low pseudo  R2 
is anticipated; a lower standard means bias; and the rejection of significant joint variables 
after matching (Caliendo & Kopeinig, 2008). The covariate distribution after matching, 
pseudo R2 (0.019), and the p-value (1.000) of the likelihood ratio show that covariates are 
balanced across households of adopters and non-adopters.

There is enough overlap between CSA adopters and non-adopters, as shown in Fig. 3’s 
common support graph. Before matching, there is a roughly 70% disparity between adop-
ters and non-adopters’ propensity score amounts; after matching, the bias was reduced to 
4.7%. As explained before, matching considerable variables show significant deference, but 
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after matching, all variables became insignificant and balanced. Additionally, the covariate 
balancing test results showed that the distribution of covariates among CSA adopters and 
non-adopters was comparable after matching, as evidenced by the low pseudo R2, insig-
nificant p-value, and mean standard bias (< 20%).

4.3  Estimation of the ATE of CSA adoptions

The total effect of CSA on crop income and weekly basis FCS was estimated using alterna-
tive matching algorithms such as NNM, kernel matching, and radius matching. The ATT 
estimation in all three matching algorithms shows that adopting CSA practices positively 
impacts household crop income and food consumption scores. Table 3 shows the estimated 
ATEs on the treated (ATT) from CSA adoption matching algorithms. For FCS, the ATT 
estimation results from NNM, kernel matching, and radius matching are 6.27, 8.15, and 
7.47, respectively. Meanwhile, the ATE of an increase in weekly FCS ranges from 6.27 
to 8.15 higher for CSA adopters than non-adopters. Tafesse et al. (2020) discovered that 
the effects of moringa crop adopters on FCS were 6.2 higher than non-adopters in south-
ern Ethiopia. Similarly, CSA adoption has a significant positive impact on household crop 
income per hectare, as shown in Table 3. The ATEs of CSA adoption on crop income range 
from 4902.41 to 5116.91 ETB higher than non-adopters. This study’s findings are con-
sistent with Fentie and Beyene (2019), who found that adopting CSA positively impacts 

Table 2  Estimated results of 
the logit specification of the 
propensity scores

Number of obs 385
Prob > chi2 0.000
Pseudo R2 0.2436
*, **, and *** represents level of significant at 10%, 5%, and 1% lev-
els, respectively

CSA_Adoptions Coef Std. Err. z

Age  − 0.026 0.015  − 1.700
Education 0.126 0.037 3.390***
Family size  − 0.148 0.053  − 2.800**
Family labor 0.142 0.052 2.730**
Gender 0.515 0.323 1.590
Landholding size 0.920 0.325 2.830**
Farming experience 0.001 0.015 0.080
Distance market  − 0.076 0.025  − 3.020***
Climate information 0.519 0.132 3.931***
Soil fertility 0.906 0.296 3.060***
Slop_farmplot  − 0.263 0.266  − 0.990
Contact extension 0.029 0.011 2.636**
Training received 1.587 0.290 5.480***
Access to credit  − 0.104 0.281  − 0.370
Social member  − 0.606 0.663  − 0.910
TLU 0.47 0.070 2.428**
CC perception  − 0.062 0.402  − 0.150
Rainfall_var  − 0.415 0.105  − 3.960***
_cons 2.905 1.012 2.870**
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household yield and crop income. The findings indicate that farmers could increase crop 
income and reduce food insecurity by implementing CSA practices and technology. Farm-
ers who use CSA practices consume more diverse food and yield higher income than non-
adopters do. Moreover, the positive effects of CSA adoption can improve farmers’ adaptive 
capacity to climate risks (Bedeke et al., 2019; Tesfay, 2020).

The scope of this study is the positive and significant average effects of CSA on house-
holds’ crop income and FCS, and it considered only the total effects. However, adopting 
CSA practices and technologies have multiples effects on different farmers’ livelihood 
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Fig. 6  Propensity score distribution and common support region for propensity score estimation: a treated 
and untreated propensity score; b propensity score in common support region. Treated on support indicated 
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the group who did not find a suitable match

Table 3  Average impact of CSA adoption on household income and food security

Outcome variables Matching 
algo-
rithms

Treated Control ATT Pseudo-R2 Standard 
mean 
bias

S.E z-value

Income NNM 15,048.01 9972.94 5057.07 0.027 5.0 1405.34 3.61
KM 14,875.36 9758.44 5116.91 0.031 4.8 1410.48 3.63
RM 14,875.36 9972.94 4902.41 0.134 7.1 984.69 4.98

FCS NNM 43.43 37.15 6.27 0.036 8.0 1.96 3.19
KM 43.96 35.81 8.15 0.037 4.3 1.06 7.63
RM 43.72 36.24 7.47 0.134 7.5 0.56 13.18
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systems, environment, market, health, and industry (Kalimba & Culas, 2020; Sardar et al., 
2021).

4.4  Sensitivity analysis of treatment effects

The matching approach is the widely used method to estimate ATEs (Karimi et al., 2020). 
The estimation of the ATE using various matching algorithms is not robust against hidden 
bias. It is assumed that hidden bias characteristics that go unobserved could impact match-
ing estimation for the treatment and outcome variables (Becker & Caliendo, 2007; Rosen-
baum, 2002). Rosenbaum’s (2002) proposed abounding approach was used to address 
such hidden bias. The outcome variable estimated at various critical level value of gamma 
indicated the p critical values are significant, implying that the important covariates which 
can affect both CSA adoption and outcome variables have been considered in this study. 
We did not find the critical value of gamma* that questioned the estimated value of ATT 
(Appendix 1). According to the bounds estimation, the results of ATEs are therefore not 
sensitive to the presence of the hidden bias. Because this is the only effect of the adoption 
of CSA practices on household income and food security, our impact estimate of ATT is 
not sensitive to unobserved selection bias.

5  Conclusion and policy implication

The study examined the impact of CSA practices and technological interventions on farm 
income and food security in rural households in southern Ethiopia. It relied on obser-
vational data from household surveys in selected CSVs in southern Ethiopia. The study 
highlighted CSA measures’ substantial implications on farm income and food security. 
Smallholder farmers are adopting several CSA innovations to mitigate the negative effects 
of CC and maintain agricultural productivity. The study’s key findings show that small-
holder farmers who implemented CSA measures earned significantly more farm income 
and improved their food security compared with non-adopters. The contribution of CSA 
measures on farmers’ income and food security can be strengthened by providing subsi-
dies, extension services, and accurate climate services. This study suggests that promoting 
and scaling up a portfolio of CSA measures for farmers living in diverse landscapes should 
be identified and prioritized. In this regard, smallholder farmers’ knowledge and awareness 
of CC and its impact must be prioritized because it helps to increase the adoption rate of 
appropriate CSA innovations in their farming system.

The study contributes to the existing literature by providing useful baseline infor-
mation for future CSA research and policy intervention. However, the study has some 
limitations. First, the study should rely on cross-sectional farm-level household data 
due to a lack of baseline data, which limits the investigation of the dynamics of CSA 
intervention over time. This may affect the estimation results due to the intervention’s 
spillover effects and unobserved heterogeneity. Second, this study only measured the 
aggregate effects of selected CSA practices and technologies. However, each CSA 
practice and technologies have a different level of impact on household welfare, and an 
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independent study is required to provide detailed CSA measures for designing specific 
interventions. Moreover, future studies need to use panel data collected from both pro-
gram participants and non-participants before and after implementation of the program 
intervention to help assess the dynamic nature of CSA interventions and capture pos-
sible unobserved heterogeneities.

Appendix 1

(See Tables 4 and 5).
Income and crop yield changes after CSA adoption.

Table 4  Rosenbaum bounds for 
_FCS (N = 384 matched pairs)

*gamma - log odds of differential assignment due to unobserved fac-
tors
sig + - upper bound significance level
sig − - lower bound significance level
t-hat + - upper bound Hodges-Lehmann point estimate
t-hat − - lower bound Hodges-Lehmann point estimate
CI + - upper bound confidence interval (a = .95)
CI − - lower bound confidence interval (a = .95)

Gamma sig + sig − t-hat + t-hat − CI + CI −

1 0 0 39.9876 39.9876 39.9876 39.9876
1.25 0 0 39.9876 39.9876 39.9876 39.9876
1.5 0 0 39.9876 39.9876 39.9876 43.7264
1.75 0 0 39.9876 39.9876 39.9876 43.7264
2 0 0 39.9876 43.7264 39.9876 43.7264

Table 5  Rosenbaum bounds 
for log crop income (N = 384 
matched pairs)

*gamma - log odds of differential assignment due to unobserved fac-
tors
sig + - upper bound significance level
sig − - lower bound significance level
t-hat + - upper bound Hodges-Lehmann point estimate
t-hat − - lower bound Hodges-Lehmann point estimate
CI + - upper bound confidence interval (a = .95)
CI − - lower bound confidence interval (a = .95)

Gamma sig + sig − t-hat + t-hat − CI + CI −

1 0 0 10,500 10,500 9500 11,450
1.25 0 0 9500 11,400 8700 12,500
1.5 0 0 8850 12,250 8000 13,500
1.75 0 0 8325 13,000 7500 14,500
2 0 0 7900 13,750 7100 15,500
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69.11%

3.393%

11.25%

16.25%

Increased production Decrease production
No effect on crop production Don't know

52.86%

8.571%

23.57%
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Changes in income due to CSA adoptions Change in crop yield due to CSA adoption.

Appendix 2: Selected CSA practices in the study area
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SWC with biological measures improved crops
crop rotation Agroforestry
Improved breeding Controlled grazing
Residue incorporation Cut and carry system
Minimum tillage/mulching

Selected CSA practices in the study area.
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Appendix 3: Variable description and measurement used in the model

Variable explanation Mean Std. Dev

CSA adoption 1 for adopters, 0 otherwise 0.618 0.486
Climate change perceptions 1 for perceived, 0 otherwise 0.868 0.339

  Age Actual age of the household head in years 50.423 13.461
  Education Level of education in years 3.112 3.854
  Family size Number of family members in the household 7.429 2.451

Family labor Number of productive labors 3.79 1.08
  Gender 1 for male, 0 otherwise 0.805 0.397
  Landholding size Total crop landholding in hectares 0.617 0.466
  Farming experiences Actual farming experience of the household 25.67 13.538
  Distance outputmar ~ t Distance of input and output market in km 4.871 5.7
  Access climatetinf ~ n 1 for access to climate information, 0 otherwise 0.771 0.42
  Contact extension Number of annual contacts with extension agents 5.117 12.298
  Training received 1 if the farmers had received training, 0 otherwise 0.732 0.443

Access credit 1 if the farmers had access to credit, 0 otherwise 0.286 0.452
  Social membership 1 if the farmer was a member of a social group, 0 0.956 0.206
  TLU Tropical livestock unit 2.442 1.868
  Income Estimated annual income in Ethiopian currency 12,571.66 907.48

Soil fertility 1 if a farmer has fertile soil, 0 otherwise 0.63 0.04
Rainfall Average annual rainfall in mm 1249.1 441.336
Slope of farm plot 1 if farm plot is steep slope, 0 otherwise 0.56 0.032

Appendix 4: Results of the Heckman probit selection model

Variables Outcome model Selection model

Regression Marginal value Regression Marginal value

Coefficient z-value Coefficient z-value Coefficient z-value Coefficient z-value

Age 0.012 1.93 0.012 1.93 0.026 2.87 0.003 2.45
education 0.044 4.98 0.214 2.35 0.154 16.61 0.026 5.53
Family size 0.031 1.83 0.031 4.39
Gender 0.103 0.89 0.103 0.89 0.016 0.08 0.003 0.48
landhold-

ing_size
0.160 8.46 0.161 2.17

farming_expe-
riences

0.024 4.19 0.039 6.90 0.028 4.19 0.036 2.85

access_exten-
sion

0.137 3.43 0.137 4.58

distance_out-
putmarket

 − 0.012  − 1.71  − 0.012  − 1.71
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Variables Outcome model Selection model

Regression Marginal value Regression Marginal value

Coefficient z-value Coefficient z-value Coefficient z-value Coefficient z-value

access_clima-
tetinforma-
tion

0.402 5.99 0.202 6.79 1.084 5.99 0.231 8.56

contact_exten-
sion

0.213 6.20 0.013 2.93

Training_
received

0.224 2.21 0.224 2.21

access_credit 0.001 0.01 0.001 0.01
Social_mem-

ber
0.206 20.29 0.106 2.59 0.620 1.70 0.005 2.72

TLU 0.013 5.78 0.013 5.77
Annual 

income
0.235 2.68 0.235 2.68

Soil fertility 0.135 4.71 0.135 1.37
slop_farmplot  − 0.012  − 0.14  − 0.012  − 0.14
rainfall_var 0.069 1.97 0.020 2.21
Constant 0.490 2.65 0.121 2.79
Total observa-

tion 385
Censored 79
Uncensored 

306
Wald chi-

square (zero 
slopes) 
82.45, 
p < 0.001

Wald chi-
square 
(independent 
equation)

10.25, 
p < 0.001

Source: Authors’ computation based on survey data 2021.
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