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Abstract

Mapping of land use/ land cover (LULC) dynamics has gained significant attention in the

past decades. This is due to the role played by LULC change in assessing climate, various

ecosystem functions, natural resource activities and livelihoods in general. In Gedaref land-

scape of Eastern Sudan, there is limited or no knowledge of LULC structure and size,

degree of change, transition, intensity and future outlook. Therefore, the aims of the current

study were to (1) evaluate LULC changes in the Gedaref state, Sudan for the past thirty

years (1988–2018) using Landsat imageries and the random forest classifier, (2) determine

the underlying dynamics that caused the changes in the landscape structure using intensity

analysis, and (3) predict future LULC outlook for the years 2028 and 2048 using cellular

automata-artificial neural network (CA-ANN). The results exhibited drastic LULC dynamics

driven mainly by cropland and settlement expansions, which increased by 13.92% and

319.61%, respectively, between 1988 and 2018. In contrast, forest and grassland declined

by 56.47% and 56.23%, respectively. Moreover, the study shows that the gains in cropland

coverage in Gedaref state over the studied period were at the expense of grassland and for-

est acreage, whereas the gains in settlements partially targeted cropland. Future LULC pre-

dictions showed a slight increase in cropland area from 89.59% to 90.43% and a

considerable decrease in forest area (0.47% to 0.41%) between 2018 and 2048. Our find-

ings provide reliable information on LULC patterns in Gedaref region that could be used for

designing land use and environmental conservation frameworks for monitoring crop pro-

duce and grassland condition. In addition, the result could help in managing other natural

resources and mitigating landscape fragmentation and degradation.
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Introduction

Land use/ land cover (LULC) dynamics have been an important research topic since the

1970s, due to its impacts and strong links to global, regional, and local climate variability and

change [1–4]. Changes in LULC refer to the environmental changes as the result of anthropo-

genic activities and/ or natural consequences [5–7]. These changes are crucial in the modifica-

tions of micro-climate, bio(geo)diversity, ecosystem services, ecological and hydrological

cycles and Earth’s biotic processes that cause adverse effects on socio-economic and sustain-

able livelihood aspects [6, 8, 9]. Hence, understanding LULC dynamics provide a vital factor

for developing strategies for monitoring, evaluating, and conserving natural resources that are

required for sustainable development [10, 11].

In Africa, LULC has been highly affected by severe and recurrent droughts, anthropic/

human activities, and armed conflicts, among others [12, 13]. Particularly, the sub-Saharan

Africa (SSA) region is projected to be highly susceptible to the effects of LULC changes, where

many parts of the region experienced a diverse pattern of LULC dynamics, with significant

transformations of forest and grassland into cropland [14, 15]. In addition, high levels of pov-

erty, harvesting of fuelwood, charcoal production, agricultural expansion, settlements, unfa-

vourable climatic events and land degradation in various agro-ecological zones are considered

to be the major contributors to LULC changes in SSA [2, 16, 17]. Therefore, more research on

the location, extent, magnitude and rate of LULC dynamics is still needed in SSA, where popu-

lation is growing rapidly, coexisting with soil infertility and overuse of nature-based resources

such as forests and water [2].

In Sudan, the natural resources are continuously diminishing, where forests and natural

woodlands are lost as agricultural land expands [18]. Also, about 80% of the energy used in

Sudan is produced from biomass, i.e., crop residues, charcoal and fuelwood [19]. These activi-

ties have primarily reformed LULC structure, especially in the main agricultural areas like

Gedaref state in the past decades. Gedaref state is the primary rainfed crop production region

in Sudan, where 80% of its population is engaged in farming [20]. However, in the last few

decades, this area has been exposed to large-scale land degradation indicated by reduced vege-

tation coverage, and loss of soil fertility, among others [21]. This is basically due to unsuccess-

ful land-use policies and practices used, such as sorghum mono-cropping system and

inappropriate methods of soil preparation and conservation [21–23]. Additionally, the expan-

sion of rainfed mechanized agricultural schemes in Gedaref has played a significant role in

LULC changes, which resulted in land degradation, environmental deterioration, and decline

in agricultural productivity [24]. As a consequence, livelihood in this region has been highly

affected. For instance, many pastoralists have lost their livestock or are forced to abandon live-

stock-rearing activities due to the loss of a considerable proportion of the traditional grazing

lands [24]. Therefore, mapping LULC changes in Gedaref state could enable quantification of

trends in agriculture, grassland, forest cover, and freshwater resources. This can help in man-

aging agro-natural systems and improving land use policies [25].

Detection of LULC changes using satellite remote sensing is one of the approaches that has

been intensively used to assess and understand various land-use dynamic forces at various spa-

tio-temporal scales [26]. Despite the recent advancement in remote sensing and geospatial

tools, there are inconsistency and lack of standards in LULC mapping and detection products,

particularly at global and regional scales [27]. At a local scale, several studies have successfully

assessed the dynamics of LULC and their drivers, as previously mentioned. Most of these stud-

ies have utilized commercial geospatial analytical tools like ArcGIS, Environment for Visualis-

ing Images (ENVI) and Earth Resources Data Analysis System (ERDAS), among others, for

mapping and detecting LULC changes. However, in resource-limited countries like Sudan,
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such analytical tools might not be feasibly used. Also, these tools require computers with high-

performance capability to analyze ’big’ satellite data. That also comes with time and cost impli-

cations in many developing countries. Moreover, most commercial geospatial tools do not

allow automation of satellite data acquisition, processing and analysis. To overcome these chal-

lenges, cloud-based remote sensing and geospatial analytical tools like Google Earth Engine

(GEE) have recently been introduced as freely available platforms for providing terabytes of

images and advanced machine learning and artificial intelligence analytical tools (e.g., random

forest (RF)) [28]. This could allow the development of relatively accurate semi- or fully auto-

mated LULC change detection approaches.

Furthermore, accurate LULC change layers could be efficiently used to predict future

LULC patterns, which are also helpful for forecasting the vulnerability of ecosystems to, for

instance, climate change. This requires a different set of tools that use artificial intelligence to

simulate and mimic such future LULC dynamics. One of these tools is the cellular automata

(CA) model, which has a high potential to effectively perform nonlinear spatially complex

LULC change processes [29]. Cellular automata is a valuable approach for understanding

LULC dynamics and their integral systems, especially when combined with other machine

learning techniques, such as artificial neural network (ANN) [30, 31]. The CA-ANN is an arti-

ficial intelligence algorithm commonly used for simulating LULC change patterns, and it

works on what-if scenarios [31, 32]. In spite of the complexity of LULC set up in any ecosys-

tem, the CA-ANN model provides comparatively accurate future predictions that could deliver

to stakeholders and policymakers of future LULC outlooks for informed planning [29, 33, 34].

Thus far, in Sudan, studies have mainly utilized the maximum likelihood (ML) classifier

with Landsat and Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) datasets to characterize LULC dynamics in rainfed agricultural areas. Subsequently,

LULC changes in these areas were estimated using different methods. For instance, in the

Northern Kordofan region, LULC change was assessed between the periods 1973–2001 [35,

36] and 1972–2007 [37]. In West Kordofan, LULC changes were mapped for 2000–2005 [38].

Negative vegetation cover changes were reported in the two regions, mainly due to desertifica-

tion and socio-economic effects. Similarly, in the Gedaref state, which is the focus of the pres-

ent study, LULC conversion was evaluated by Sulieman [39] and Sulieman and Ahmed [40] in

the southern (1972–2003) and Biro et al. [22] in the northern (1979–2009) regions, respec-

tively. These studies found drastic changes in natural vegetation, mainly due to the areal extent

of mechanized rainfed farming in Gedaref state. Furthermore, Sulieman [41] quantified LULC

changes in the middle of Gedaref and found positive (in bare land) and negative (in dense for-

est cover) changes between the period 1973 and 2015. Notwithstanding, none of the above-

mentioned studies have estimated the change in LULC in the entire Gedaref state, which is the

country’s food basket. Moreover, no study has utilized a machine learning algorithm to classify

LULC in rainfed agricultural areas in Sudan. Despite the relatively high LULC classification

accuracy obtained in the previously-mentioned studies using ML classifier, the transferability

of such a parametric mapping approach to other points in space and time could be hindered

by overfitting due to limited training dataset; studies have yet to predict the future LULC

changes in high productive rainfed agricultural areas in Sudan like Gedaref. Therefore, this

paper aims to (1) assess LULC changes in the Gedaref state, Sudan for the past thirty years

(1988–2018) using Landsat imageries and the RF classifier in Google Earth Engine (GEE) plat-

form, (2) determine the underlying dynamics that cause the changes in the landscape structure

using intensity analysis, and (3) predict future LULC in 2028 and 2048 using CA-ANN algo-

rithm. This study is the first attempt to, at the same time, quantify LULC changes, estimate

their intensities and predict the future LULC dynamics for the entire Gedaref state.
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Methodology

Study area

This study was conducted in Gedaref state, Sudan that expands between 33˚– 37˚ E and 12˚–

16˚ N (Fig 1). The study area covers approximately 78.228 km2 and is characterized by a semi-

arid environment that receives an annual rainfall of 600 mm on average. The weather in

Gedared state is relatively warm with a daily maximum temperature range of 25˚C to 40˚C

[42]. The presence of fertile clay soils coupled with optimal amount of rainfall has made

Gedaref state the most suitable region for crop cultivation under rainfed conditions in Sudan.

Indeed, 80% of the population and households in the state mainly rely on different forms of

agricultural activities for their livelihood [24, 38]. The major income generation activity in

Gedaref state is crop cultivation, followed by animal keeping, and forest produce such as tap-

ping of gum arabic and charcoal production [43]. The population in Gedaref state was esti-

mated to be about 2,208,385 in 2018. Generally, in this state, the population grows by a rate of

4.7% annually, which is more than the national rate of 2.2% [44]. Thus, this region was chosen

Fig 1. Location of Gedaref state in Sudan.

https://doi.org/10.1371/journal.pone.0288694.g001
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for this study due to its importance as Sudan’s hub of rainfed crop production, with moder-

ately fertile soil and fairly good vegetation cover. However, the land in Gedaref has recently

experienced dramatic degradation as the result of mechanized farming expansion, population

growth and an extensive deforestation [22, 40].

Data description

Satellite remote sensing data acquisition and pre-processing. Fig 2 shows the methodo-

logical approach used in this study. Landsat multispectral images are the most widely used for

time series analysis of LULC classification due to the long historical data that are available in

their archive [45]. In this study, we used multi-date Landsat imagery for the years 1988, 1998,

2008 and 2018 acquired by Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic

Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) sensors from the freely

available data catalog in GEE at a spatial resolution of 30 m in the World Geodetic System

(WGS84) [46]. Standard image pre-processing, including cloud filtering, topographic, atmo-

spheric, and geometric corrections, layer stacking and re-sizing was performed in GEE. A

yearly (from 1st January to 31st December) median value was used to create a composite image

for the selected years (i.e., 1988 and 1998 for Landsat 5, 2008 for Landsat 7, and 2018 for Land-

sat 8) [47, 48].

Training and testing data. The definition of LULC classes used in this study were based

on the Intergovernmental Panel on Climate Change (IPCC) classes [49], namely cropland, for-

est land, grassland, water, and settlements. These five classes were obtained through onscreen

digitization using historical high-resolution images on the Google Earth Pro platform. The

onscreen digitization approach has been widely used and reported in the literature for obtain-

ing LULC classes, and it is found reliable and accurate [50–52]. To obtain reasonably represen-

tative and reliable classification samples for each LULC class, we randomly collected 1000 on-

screen reference samples for each year (1988, 1998, 2008 and 2018). From the 1000 reference

samples, we created 700 polygons to train the classification algorithm (herein they are referred

to as training data). These training polygons were relatively small in size, each contained many

comparatively homogeneous pixels of a specific LULC class to reduce the influence of spatial

autocorrelation. We used polygon samples as training data to capture the expected spectral

intra and inter variability within and among the LULC classes. Moreover, polygon samples

enable acquisition of the colour gradient within each LULC class (e.g., deep water against shal-

low water; high, medium, and low grassland coverage) to avoid confusion between the classes.

From the remaining 1000 samples, we generated 300 data points, which were utilized to test

the classification accuracy (herein they are referred to as test data). The test points were also

randomly selected at a minimum distance of 100 m from the nearest training polygon to mini-

mize overfitting and spatial multi-correlation [51].

Landsat image classification

There are many advanced non-parametric machine-learning classification algorithms in GEE

for supervised classification, such as RF, support vector machines, and classification and

regression tree, among others [53]. Also, a meta-analysis of more than 300 peer-reviewed arti-

cles published in the last ten years before 2018 showed that the most used classifier for classify-

ing satellite data in GEE is the RF [54]. The RF classification algorithm was employed in GEE

to classify and distinguish among the LULC classes of Gedaref state in Sudan using the multi-

date Landsat images. Many studies have reported that RF algorithm achieved higher classifica-

tion accuracy and reliability compared to other machine learning algorithms [55–57]. This is

because RF is a user-friendly algorithm that requires settings and optimization of two
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parameters only. It also can handle large and noisy data as well as outliers, and reduce overfit-

ting. The algorithm can simulate missing values through the calculation of proximity among

samples [58]. This algorithm is a combination of learning methods, which includes many indi-

vidual decision trees [59, 60]. Each single decision tree (ntree) has many splits (mtry, i.e., num-

ber of randomly selected variables) and nodes that predict the final class label based on the

large number of votes from all decision trees. Considering the recommendations of other

Fig 2. Methodological flowchart for the land use/ land cover (LULC) mapping, transition, intensity analyses and

future prediction.

https://doi.org/10.1371/journal.pone.0288694.g002
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studies [61, 62], we used 100 trees (ntree = 100), and a default mtry value (the square root of

the number of predictor variables). The strength of RF is that it can efficiently process a huge

number of input variables without being affected by outliers and noise in the data, and is

highly robust against overfitting [51, 53, 63].

Classification accuracy assessment

The reliability of a thematic LULC map relies on the overall and individual accuracies of the

map and the individual classes, respectively [64]. Commonly, several metrics like kappa coeffi-

cient, producer’s accuracy (PA), user’s accuracy (UA) and overall accuracy (OA) are utilized to

validate the accuracy of the thematic maps. In this study, we calculated these accuracy metrics,

except kappa coefficient, to assess the accuracy of our LULC classification experiment. Subse-

quently, a class-wise accuracy metric was developed by applying the F1-score formula. This

score combines PA and UA into a single fused accuracy measure ranging from 0 to 100% [65],

and it was calculated using the equation below.

ðF1Þi ¼
2� PAi � UAi

PAi þ UAi
ð1Þ

Additionally, due to many concerns regarding the use of kappa coefficient in evaluating the

reliability of thematic maps [66], we performed two more suitable measures of disagreement

viz., quantity disagreement (QD) and allocation disagreement (AD) that were proposed by

Pontius and Millones [67]. The QD measures the difference between the observed and mod-

elled class instances, whereas AD assesses the variance in the localities of the observed class

samples.

Land use/ land cover (LULC) change detection

LULC patterns of different time periods in the study area were assessed to detect the change in

each class category. The change (%) for various LULC types in different point in time was cal-

culated [68] as expressed in following equation:

C2 � C1

C1

� 100 ð2Þ

where C1 and C2 are LULC class areas during the first (1988) and last of the study time period

(2018), respectively.

The transition matrix produced in this analysis provided a general overview of the LULC

stocks (amount and composition). Also, we evaluated the transfers among LULC categories

every 10 years during the study period, 1988–1998, 1998–2008 and 2008–2018.

Land use/ land cover (LULC) transitions mapping

In order to visually and quantitatively examine the nature of LULC transitions in Gedaref state

and the transformation of each LULC class [13, 69], we used the Semi-Automatic Classifica-

tion plugin that embedded in QGIS software version 2.18.15. The thematic LULC maps

between 1988 and 2018 were used to create LULC transitions maps and their corresponding

transition matrixes, where we used the LULC maps for the years 1988, 1998, and 2008 as refer-

ence layers to detect the transitions in each class in 30, 20 and 10 years (i.e., till 2018),

respectively.
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Intensity analysis in land use/ land cover (LULC) transitions

Overall, the thematic LULC maps do not mimic the pattern and magnitude of the change that

cause the landscape transformation [70]. To address this, Aldwaik and Pontius [71] proposed

the so-called ‘intensity analysis’, which is a qualitative approach for better understanding the

magnitude of the transformation in landscape structure. We performed LULC intensity analy-

sis using the contingency table for each period to look at the extent and intensity of change at

various scales; interval, category, and transition. The analysis of the interval level computes the

rate and size of change over a specific point in time. Whereas, the categorical level analysis

examines differences in the intensity of change across LULC classes. Lastly, the analysis of the

transition level emphasises on the magnitude and direction of the change between the LULC

categories in each time interval [70, 72].

The uniform intensity lines provided by all three levels of analysis depict a theoretical situa-

tion in which uniform transformation takes place across all LULC classes. The predicted class

area from the interval level experiment defines the period that has annual fast or slow changes

compared to the uniform intensity line. When the intensity of a category exceeds the uniform

line, it is called an active category; when it falls lower than the uniform line, it is called a dor-

mant category. Similarly, in the transition intensity, a targeted class is the one that its loss or

gain exceeds the uniform intensity line. On the other hand, if a category does not reach the

uniform intensity line, it is regarded as avoided [70]. Initially, we generated transition matrices

of the periods 1988–1998, 1998–2008, and 2008–2018 for the thematic LULC maps. Thereaf-

ter, we used a tool developed by Aldwaik and Pontius [71] to compute the three intensity levels

at different time intervals using the following equations and their description provided in

Table 1:

Firstly, the transitions at the interval level was computed (Eq 3), by dividing the magnitude

of change by the length of time interval, generating percentage of spatial extent. The categori-

cal annually gross loss intensity in a time interval was calculated, by dividing the size of the

category’s annual gross loss by the size of the category at the beginning of each interval (Eq 4).

On the other hand, the category’s annually gross gain intensity in a time interval was calculated

by dividing the size of the category’s annually gross gain with the size of the category at the

Table 1. Mathematical symbols used to calculate different intensities as illustrated in Eqs 3–7 as described by Ald-

waik and Pontius (2012).

Symbol Description

T number of time points

γt year at time point t
t index for the initial time point of an interval

[γt−γt+1],where t ranges from 1 to T−1

J number of categories

i index for a category at the initial time point of an interval

j index for a category at the latter time point of an interval

n index of the gaining category for the selected transition

Ctij size of transition from category i to category j during interval [γt−γt+1]

St annual change during interval [γt−γt+1]

Gtj intensity of annual gain of category j during interval [γt−γt+1] relative to size of category j at time t+1

Lti intensity of annual loss of category i during interval [γt−γt+1] relative to size of category i at time t
Rtin intensity of annual transition from category i to category n during interval [γt−γt+1] relative to size of

category i at time t
Wtn uniform intensity of annual transition from all non-n categories to category n during interval [γt−γt+1]

relative to size of all non-n categories at time t

https://doi.org/10.1371/journal.pone.0288694.t001
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final stage of each time interval (Eq 5). The common hypothesis for each interval’s category

level proposes that all categories experience gross loss and gross gain with the same annually

intensity. This sum is equal to the transition rate in the interval (St). If Lti< St, the loss of i, is

paused during the interval t. In contrast, if Gtj< St, the gain of j is withheld during the interval

t. In the case Lti> St, loss of i is considered to be active during the interval t; similarly, if Gtj>

St, gain of j is considered active during that time interval. Eq (6) computes the annual transi-

tion intensity of the gain in a specific category n from other categories i, that is the amount of

the annually transition to the specific category n from the other category divided by amount of

another category at the beginning of each interval. The hypothesis at the level of transition for

intervals states that particular category n moves to all other categories with a comparable

annual intensity. This amount is calculated by dividing the size of the yearly gain of category n
by the total quantities of sizes of all other categories at the beginning time of intervals (Eq 7).

Hence, if Rtin<Wtn, the gain of n pause i during the interval t. If Rtin>Wtn, the gain of n tar-

gets i within interval t.

St ¼
Change during ½gt; gtþ1�

ðDuration of ½gt; gtþ1�ÞðExtent SizeÞ
100% ¼

PJ
j¼1
½ð
PJ

i¼1
CtijÞ � Ctij

ðgtþ1; gtÞð
PJ

j¼1

PJ
j¼1

CtijÞ
100% ð3Þ

Lti ¼
Annual loss of i during ½gt; gtþ1�

Size of i at gt
100% ¼

½
PJ

i¼1
CtijÞ � Ctij�=ðgtþ1 � gtÞ
PJ

j¼1
Ctij

100% ð4Þ

Gtj ¼
Annual gain of j during ½gt; gtþ1�

Size of j at gtþ1

100% ¼
½ð
PJ

i¼1
CtijÞ � Ctij�=ðgtþ1 � gtÞ
PJ

i¼1
Ctij

100% ð5Þ

Rtin ¼
Annual transition from i to n during ½gt; gtþ1�

Size of i at gt
100% ¼

Ctin=ðgtþ1 � gtÞ
PJ

i¼1
Ctij

100% ð6Þ

Wtn ¼
Annual gain of n during ½gt; gtþ1�

Size of non � n at gt
100% ¼

½ð
PJ

i¼1
CtinÞ � CtnnÞ=ðgtþ1 � gtÞ

PJ
j¼1
½ð
PJ

i¼1
CtijÞ � Ctnj

100% ð7Þ

Future land use/ land cover (LULC) prediction and validation

After generating LULC maps from Landsat data for the period 1988 to 2018 with 10 years

intervals, future simulation of LULC change was performed using CA-ANN algorithm in

MOLUSCE plugin that embedded in QGIS software version 2.18.15. Studies have shown that

the CA-ANN model is more powerful and robust in simulating future LULC as compared to

other models like linear regression and Marcov [31, 73, 74]. Moreover, the MOLUSCE plugin

effectively processes LULC change analyses and is suitable for evaluating spatio-temporal

LULC changes and predicting future scenarios [75, 76]. For future LULC predictions, we

retained the same resolution (30 x 30 m) and WGS 84 coordinate system.

To simulate future LULC, it is recommended that a number of predictor variables, which

play a major role in LULC change and transition should be considered [77]. Based on LULC

change drivers that were reported in previous studies [78–80], and the availability of such fac-

tor datasets, we selected 8 predictor variables (Fig 3) to describe the LULC change processes

that occurred in Gadaref state between 1988–2018. These predictors include topographic vari-

ables such as slope, aspect and elevation; and human disturbance variables like distance from
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Gedared state center, towns, highways, roads and the railway line (Fig 3). These variables are

frequently used to predict LULC because they provide reproducible data on the natural and

human disturbances in LULC processes [76].

Prediction of future potential LULC for a prospective project can be only reliable if the sim-

ulation outcome is validated using existing datasets. Accordingly, in the first step, we simulated

LULC for the year 2018 using the transition matrix generated from the thematic maps of the

years 1998 and 2008 and the selected predictor variables that are presented in Fig 3. Thereafter,

the validation process was performed using a comparative analytical procedure of the overall

correctness percentage and kappa coefficient in the MOLUSCE plugin. Specifically, to validate

the performance of CA-ANN model, we compared the simulated LULC map for 2018 that was

generated using CA-ANN algorithm with the one that generated for the same year using the

multi-date Landsat images and RF classifier.

After obtaining adequate validation metrics, we utilized LULC data from 2008 and 2018

maps (herein referred to as prediction data) to simulate future LULC in 2028 and 2048.

Results

Land use/ land cover (LULC) classification

The classified LULC maps and associated area statistics under each class category for 1988,

1998, 2008 and 2018 are presented in Fig 4 and Table 2. Among the LULC categories, cropland

was the most dominant in 1988, followed by grassland, each occupying 78.64%, and 19.64%,

Fig 3. Predictor variables used for land use/ land cover (LULC) future prediction.

https://doi.org/10.1371/journal.pone.0288694.g003
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respectively of the total area (Table 2). Whereas, forest, water and settlement covered less than

2% of the studied landscape (Table 2). A similar trend was observed for the other studied

years. Nevertheless, there were distinct LULC change in Gedaref during the study period

where an expansion in cropland and settlement area, and a decline in forest and grassland

areas were observed (Fig 4 and Table 2). Water area increased in all study years, except in

2008.

Fig 4. Classified land use/ land cover (LULC) maps of Gedaref state for the years 1988, 1998, 2008 and 2018 produced using multi-date Landsat images

and random forest classification algorithm.

https://doi.org/10.1371/journal.pone.0288694.g004
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Accuracy of land use/ land cover (LULC) classification

The accuracy evaluation metrics of the classified LULC maps generated from confusion matrix

is presented in Table 3. The overall accuracy of the 1988, 1998, 2008 and 2018 LULC maps was

81.75%, 83.28%, 85.15%, and 87.70%, respectively. While F1 score value for all LULC classes in

all years ranged between 80% and 90% (Table 3). Additionally, the results of QD for all the

classified maps ranged between 3% and 4%, whereas, AD varied from 9% to14% (Table 3).

Land use/ land cover (LULC) change detection

Forest and grassland categories were considerably decreased by about 46% and 19%, respec-

tively in the first 1998–2008 interval (Table 4). On the other hand, there was an expansion in

Table 2. Area (ha) and percent cover (%) of each land use/ cover (LULC) class in Gedaref state for the years 1988, 1998, 2008, and 2018 estimated using multi-date

Landsat images and random forest classification algorithm.

Year 1988 1998 2008 2018

Area Area Area Area

LULC ha % ha % ha % ha %

Cropland 5023958.04 78.64 5289566.13 82.8 5566904.46 87.14 5723662.45 89.59

Forest 0069053.13 01.08 0037217.16 00.58 0035406.99 00.55 0030056.44 00.47

Grassland 1254479.85 19.64 1012649.94 15.85 0734874.57 11.51 0548998.87 08.59

Water 0034132.05 00.53 0039363.12 00.62 0035961.84 00.56 0057366.22 00.89

Settlement 0006739.02 00.11 0009565.74 00.15 0015214.23 00.24 0028278.13 00.44

Total 6388362.09 100 6388362.09 100 6388362.09 100 6388362.09 100

https://doi.org/10.1371/journal.pone.0288694.t002

Table 3. Overall and individual class accuracies of land use/ land cover (LULC) maps of Gedaref state for the years 1988, 1998, 2008 and 2018.

Class Producer’s accuracy (%) User’s accuracy (%) F1 score (%) Overall accuracy (%) Allocation disagreement (%) Quantity disagreement (%)

1988

Cropland 88.88 77.41 82.75 81.75 14 4

Forest 81.13 81.39 81.39

Grassland 85.29 80.55 82.85

Water 81.13 81.13 81.13

Settlement 73.13 89.09 80.32

1998

Cropland 83.07 83.07 83.07 83.28 14 3

Forest 83.13 87.34 85.18

Grassland 84.48 77.77 80.99

Water 86.66 81.25 83.87

Settlement 78.78 86.66 82.53

2008

Cropland 95.23 82.19 88.23 85.15 11 4

Forest 86.07 85.00 85.53

Grassland 76.56 87.50 81.63

Water 88.88 87.67 88.27

Settlement 76.92 83.33 80.00

2018

Cropland 89.28 80.64 84.74 87.70 9 3

Forest 89.07 88.33 88.70

Grassland 84.78 81.25 82.97

Water 79.20 94.11 86.02

Settlement 92.40 88.48 90.40

https://doi.org/10.1371/journal.pone.0288694.t003

PLOS ONE LULC mapping, intensity of change and future prediction of Gedatef landscape

PLOS ONE | https://doi.org/10.1371/journal.pone.0288694 July 24, 2023 12 / 28

https://doi.org/10.1371/journal.pone.0288694.t002
https://doi.org/10.1371/journal.pone.0288694.t003
https://doi.org/10.1371/journal.pone.0288694


cropland area during the whole study period, which ranged between about 2.8% and 5% in the

three intervals. Similarly, the settlement areas dramatically increased by 41.94% and 59.04% in

the first and second intervals, respectively, with the third interval being drastically greater

(85.86%) than that of the first and second intervals. Water class increased by 15.32% in the

first period of the study and decreased during the second time period, with a sharp increase

(85.86%) in the third interval compared to the increase in the first interval.

Land use/ land cover (LULC) transitions mapping

The results in Fig 5 and S1–S3 Tables indicate the transformation of each of the five LULC

classes during 1988–2018, 1998–2018 and 2008–2018. The major LULC transition that took

place over the study period (1988–2018) were forest to cropland, grassland to cropland, crop-

land to grassland, water to cropland, cropland to water, cropland to settlement and grassland.

In particular, the dominant transition in Sothern and Western parts of Gedaref sate across the

three transition periods (1988–2018, 1998–2018 and 2008–2018) was forest to cropland.

Whereas the transition from grassland to cropland was mainly observed in Northern and

Northeast of Gedaref state (Fig 5). The transition from cropland to settlement was mainly

occurred in Central, Northwest, and Southern parts of Gedaref state.

Intensity analysis in land use/ land cover (LULC) transitions

Interval level intensity results showed the changing intensity over each time period (Fig 6A)

and the annual change between intervals (Fig 6B). Interval analysis revealed that the period

1988–1998 experienced fast LULC transitions and annual change rate. In the second interval,

the observed and annual transitions were relatively equal to the uniform line but lower than in

the third interval indicating slow LULC transitions.

Fig 7 illustrates that the LULC classes experienced dormant or active changes during the

study period. Moreover, it shows that the active LULC classes were the ones that their gain or

loss is crossing the uniform line. In contrast, the dormant categories are those of gain or loss

that do not reach the uniform line. During the three intervals, forest, grassland, water and set-

tlement categories were active gainers with relatively higher gains in the settlement, forest and

water, respectively. However, cropland category was the dormant gainer throughout the study

period. Three categories, i.e., forest, grassland and water were active losers during the three

intervals with relatively higher losses in forest and grassland, respectively. Whereas, settlement

was an active loser during the first interval and a dormant loser during the second and third

intervals. The cropland category was the dormant loser during the three intervals.

Figs 8–10 demonstrate the results of the transition level analysis for each of LULC category.

The vertical dashed lines on both sides of the chart represent hypothetical uniform intensity

lines. The left side of the uniform line explains the theoretical uniform value in the transition

Table 4. Land use/ land cover (LULC) change estimates (area and percentage) for Gedaref state for the 1988–1998, 1998–2008, 2008–2018 and 1988–2018.

Year 1988–1998 1998–2008 2008–2018 1988–2018

LULC Area Area Area Area

ha % ha % ha % ha %

Cropland 265608.00 5.28 277338.30 05.24 156758 2.81 699704.35 13.92

Forest -31835.97 -46.10 -1810.17 -04.86 -5350.55 -15.11 -38996.70 -56.47

Grassland -241829.91 -19.27 -277775.37 -27.43 -185875.71 -25.29 -705480.98 -56.23

Water 5231.07 15.32 -3401.28 -8.64 21404.38 59.52 23234.17 86.07

Settlement 2826.72 41.94 5648.49 59.04 13063.9 85.86 21539.11 319.61

https://doi.org/10.1371/journal.pone.0288694.t004
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intensity that accounted for the losses in specific LULC class. While the side on the right repre-

sents the gains in transition intensity. The intensity showed that the expansions in cropland in

1998 targeted forest only and losses in cropland targeted both forest and settlement (Fig 8A).

The gain and loss in forest areas targeted water and cropland (Fig 8B). Likewise, the transition

to grassland in 1998 targeted settlement and avoided the other LULC categories, while the

losses in grassland targeted water (Fig 8C). Losses in water targeted cropland and forest,

Fig 5. Land use/ land cover (LULC) transitions of Gedaref state during 1988–2018, 1998–2018 and 2008–2018.

https://doi.org/10.1371/journal.pone.0288694.g005
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whereas the gains in the water category targeted forest, grassland, and settlement (Fig 8D). The

reductions and expansions in cropland between 1998 and 2008 followed a similar trend to that

of 1988–1998, where this category targeted forest areas (Fig 9A). On the other hand, the expan-

sions in settlements in the same period targeted cropland, but reductions in settlement area

targeted grassland and water equally (Fig 9E). Gains in water targeted forest and slight grass-

land, and losses targeted forest (Fig 9D).

In the final ten years of the studied period (2008–2018), cropland had different transition

intensity trends from the first and second periods and relatively similar transition intensity

trends for the forest. In contrast, during this period, water experienced an expansion with

Fig 6. Interval level intensity of land use/ land cover (LULC) change for 1988 1998, 1998–2008 and 2008–2018. A) the

percent of the area that changed over each interval and B) the percentage of the area that annually changed during each interval.

https://doi.org/10.1371/journal.pone.0288694.g006
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transition intensity targeting forest and grassland (Fig 10). The intensity of water gained from

grassland was more significant than for forest. Settlements expansion over this period targeted

water and marginally cropland (Fig 10). Losses in settlement targeted water and grassland with

marginal avoidance in cropland. In both cases of losing and gaining in the settlement, the

highest transition intensity was from water and to water (Fig 10).

Future prediction of land use/ land cover (LULC)

The CA-ANN predicated future LULC for Gedaref state for the years 2028 and 2048 (Fig 11)

based on the LULC maps of the years 2008 and 2018 that were generated from Landsat images

(Fig 4). The model predicted a slight increase in cropland area from 89.59% to 90.43% and a

considerable decrease in forest area (0.47% to 0.41%) between 2018 and 2048 (Table 5). The

model also predicted a marginal decrease in grassland (8.59% to 7.78%) and an increase in set-

tlement area from 0.44% to 0.50%. Whereas, water area was predicted to be relatively consis-

tent (0.89% to 0.88%) (Table 5) between 2018 and 2048.

The validation results of the CA-ANN algorithm showed that the model adequately simu-

lated the future LULC pattern in Gedaref state with an overall correctness of 87% and kappa

coefficient of 0.86. This indicate that the simulated LULC map of the year 2018 was highly

comparable to the actual 2018 that produced in this study, indicating an accurate model

performance.

Fig 7. Land use/ land cover (LULC) category level intensity for 1988–1998, 1998–2008, 2008 and 2018.

https://doi.org/10.1371/journal.pone.0288694.g007
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Fig 8. Transition level intensity of land use/ land cover (LULC) for the period 1988–1998. (A) cropland, (B) forest, (C) grassland, (D) water and (E)

settlement (gains on the right and losses on the left).

https://doi.org/10.1371/journal.pone.0288694.g008

Fig 9. Transition level intensity of land use/ land cover (LULC) for the period 1998–2008. (A) cropland, (B) forest, (C) grassland, (D) water and (E)

settlement (gains on the right and losses on the left.

https://doi.org/10.1371/journal.pone.0288694.g009
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Discussion

In the present study, we combined on-screen digitization of polygons and points from Google

Earth Pro platform, RF classification algorithm and dense multi-date Landsat satellite images

(1988–2018) to map LULC types in Gedaref state, Sudan. For the first time, LULC for 1988–

Fig 11. Predicted land use/ land cover (LULC) in Gadaref state for 2028 and 2048.

https://doi.org/10.1371/journal.pone.0288694.g011

Fig 10. Transition level intensity of land use/ land cover (LULC) for the period 2008–2018. (A) cropland, (B) forest, (C) grassland, (D) water, and (E)

settlement (gains on the right and losses on the left).

https://doi.org/10.1371/journal.pone.0288694.g010
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2018 was mapped in the entire Gedaref state, and its future for the years 2028 and 2048 pre-

dicted. In addition, this is the first attempt to evaluate LULC rate of change, intensity and tran-

sition in Gedaref for 30 years (1998–2018). Our methodology has several advantages as

acquiring on-screen polygons and points from Google Earth can reliably be utilized to accu-

rately characterize landscape structure, especially for satellite images that have a medium spa-

tial resolution [70, 81, 82]. Also, for historical satellite image classification, real-time ground

truthing observations might not be available, hence freely accessible platforms like Google

Earth can provide accurate reference data for classification experiments. To minimize the

expected spatial autocorrelation, we used point observations with a distance not less than 100

m from the nearest training polygon to validate the classified LULC maps. Hence, our map-

ping approach provided accurate LULC patterns for Gedaref state, which has a dynamic land-

scape setup.

The overall accuracies for the years 1988, 1998, 2008, and 2018 images ranged between

81.75% and 87.70%, which are greater than a recommended acceptable LULC classification

accuracy of 70% [83, 84]. Nevertheless, the progressive increment in our LULC classification

accuracy from the initial study year (1988) to the last year (2018) could indicate challenges

associated with the availability of historical images of relatively better spatial resolution from

Google Earth in the past decades.

The results showed that cropland was the most dominant LULC class covering between

78.64% and 89.59% of the total acreage of Gedaref state. This is due to the fact that Gedaref

region is the main rainfed agricultural area of Sudan, where about 80% of the population in

this state mainly depend on agricultural production for their livelihood [20]. In addition, clay

soil, and the high amount of rainfall (400–800mm) that characterize Gedaref state, offer the

optimum conditions for the cultivation of many food and cash crops such as sorghum, millet,

sunflower, sesame, and cotton. This also explains the domination of this area by agricultural

land. Our findings also revealed accelerated LULC change between 1988 and 2018, with an

expansion in cropland and settlement, and a decrease in forest and grassland areas. These land

use dynamics could be due to human activity such as the horizontal expansion of settlements

and cultivated areas, not only by the local communities but, also by the investors and other

communities from the neighbouring states and countries [85]. Although there was a substan-

tial increase in cropland, the change in water class was unsystematic over the study period

with a dramatic increase between 2008–2018 (59.52%). This could be explained by the fluctua-

tion in the amount of rainfall that was observed in the study area due to climate variability and

change [20].

Specifically, cropland has increased from 78.64% to 89.59% during the study period

between 1988 and 2018, while the forest area declined from 1.08% to 0.47% of the total area in

Gedaref state. Our findings agreed with the results of Gadallah et al. [42], who reported a

Table 5. The proportion of predicted land use/ land cover (LULC) categories at Gedaref state.

Year 2018 2028 2048

Area Area Area

LULC ha % ha % ha %

Cropland 5723662.45 89.59 5731266.73 89.71 5777105.53 90.43

Forest 0030056.44 0.47 0029882.92 0.46 0025895.38 0.41

Grassland 0548998.87 8.59 0541367.59 8.48 0496928.83 7.78

Water 0057366.22 0.89 0057093.79 0.89 0056335.45 0.88

Settlement 0028278.13 0.44 0028751.08 0.45 0032096.92 0.50

Total 6388362.09 100 6388362.09 100 6388362.09 100

https://doi.org/10.1371/journal.pone.0288694.t005
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decrease of forest area in Wad Albashir forest in Al Rahad locality, Gedaref state from 72.2%

in 2001 to 58% in 2017, whereas cropland increased from 25.9% to 38.3% over the same

period. This has been confirmed by our transition mapping, which showed a huge transforma-

tion of forested area to agricultural land, particularly along Al Rahad River where Wad Alba-

shir forest is located, and in other forested areas in the southern Gedaref state. Generally, the

decline in the forest area could be linked to agricultural expansion, firewood, charcoal produc-

tion, timber, construction, flooding, soil erosion and desertification. The decline in grassland

(-56.23%) from 1988 to 2018 in Gedaref region confirms the results of other studies that were

conducted in some parts of the state [24, 86]. This decrease can also be explained by the fact

that agricultural areas usually expanded at the expense of grassland. Also, the transition analy-

sis showed substantial transformation of agricultural area at expense of grassland mainly in the

northern and northern-eastern parts of Gedaref state. The regulations and policies of land use

in Gedaref are biased toward cropland, compared to the grassland that was used by the pasto-

ralist for grazing. A study by Sulieman and Elagib [24] reported that this bias was adopted in

the solution of disputes during the British colonial period when the Soil Conservation Com-

mittee recommended in 1944 "where nomadic pastoralists were in direct competition for land

with settled cultivators, the rights of the cultivator should be considered as paramount because

his crops yield a higher return per unit area". Although new laws and regulations were put in

place in Gedaref state, the 1944 recommendation still implemented in some areas. Our results

also showed that the settlement areas drastically expanded more than three times (319.61%)

between 1988 and 2018. This expansion was mainly took place in central Gedaref where the

capital city is located and along Atbara, Al Rahad, Saiteet, and Basalam Revisers. Likewise, the

southern and western parts of the state, where the major agricultural schemes are exist, experi-

enced the same transformation from cropland to settlement. The expansion in settlement is

primarily to meet the demand for shelter for the raid population growth and the increase of

industrial areas in the region. This is coupled with the increase in cropland, which can be

explained by the rising demand for food to meet the growing population. Biratu et al. [87]

reported an increase in cropland and settlement areas in Ethiopia between 1986 and 2021

because of the growing population’s demand to ensure food and nutrition security in the

country.

The unsystematic change in water class in our study could be explained by many seasonal

waterways and rivers such as Atbara, Al Rahad, Saiteet, and Basalam flowing northward from

the Ethiopian highlands in the rainy season, which differ from one year to another. However,

the high increase in water class between 2008 and 2018 is associated with the construction of

the Upper Atbara and Saiteet Dam complex, which is a twin dam consisting of two dams:

Rumela Dam on the Upper Atbarah River and Burdana Dam on the Saiteet River [88]. Con-

struction of the dam began in 2011 and completed in 2016, intending to provide irrigation

water for agriculture, supply potable water for eastern states of Sudan, and power generation.

The interval level intensity revealed an intensive change of LULC in the first 10 years

(1988–1998) compared to the second (1998–2008) and third (2008–2018) intervals. However,

change in 2008–2018 was slower than in 1998–2008. This indicates that the impacts of socio-

economic and physical driving factors during the three decades were different. This also

implies a rapid change in Gedaref landscape in the first decade of our study period. The rapid

LULC changes correspond to the areal extent of mechanized rainfed farming in the area since

the late 1970s, which has attracted some migrants from different parts of the Sudan leading to

rapid change in LULC over the first interval. A study by Miller [89], reported that the develop-

ment of mechanized agricultural and grain trade in Gedaref during the 1970s enhanced the

immigration to the state from different parts of Sudan, which increased socio-economic activi-

ties in the region.
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The categorical intensity analysis; main findings firstly shown that forest, grassland and

water were both active losers and gainers. This explains that gains and losses of these categories

happen at intensities greater than the average intensity of all LULC categories. The intensity of

active losses and gains in grassland and water could be explained by the associated seasonality

of these two categories with the rainy season in Gedaref state. In contrast, the active gaining

and losing in forest can be explained by the attempts of controlling the invasive Mesquite trees

(Prosopis juliflora). This plant rapidly invades and colonizes the uncultivated land and farmers

mostly cut down Mesquite trees to clear the land for cultivation, which might result in a fluctu-

ation in forest cover. Secondly, the settlement was an active gainer and losier category between

1988 and 1998, and an active gainer and dormant loser in the 1998–2008 and 2008–2018 peri-

ods. This could be linked to lack of visual clarity of settlement pixels when reference data were

gathered from Google Earth platform. In addition, the nature of the hut houses (locally called

quttiyya), which are made of wood, grass and reeds might have been mixed up with the forest

class in the classification process. Thirdly, cropland continued as a dormant loser and dormant

gainer throughout the studied three intervals. This is because cropland accounts for the biggest

percentage of the landscape composition compared to other LULC categories.

Analysis of intensity at the transition level revealed that cropland gains from forest were

higher between 1988 and 1998 compared to the gain in cropland from the similar LULC cate-

gory over the second study period (1998–2008). However, cropland avoided gains and losses

of forest in the third interval (2008–2018). This suggests that the expansion in cropland

resulted in a decline in the forest area. Nevertheless, the loss of agricultural area to the forest is

associated with the spreading of Mesquite in cropland as we mentioned earlier. Our study also

showed the transition of forest to water in the three change periods. This might be linked to

misclassification between the two classes as most of the forests in Gedaref state are Nilotic

trees such as Acacia nilotica and Acacia seyal, which lie mainly around the seasonal rivers and

watercourses. Similarly, the gains in grassland from the settlement in the first period (1988–

1998) could be a likely result of the slight misclassification of wood, grass and hut houses as

grassland. The second explanation is that the low resolution of the satellite image for 1988–

1998 might have contributed to the misclassification of settlements as grassland. Our intensity

analysis also showed the gain of grassland from water in the second and third periods (1998–

2008 and 2008–2018). This is explained by the fact that grassland overlaps with water due to

the seasonality of water bodies in Gedaref state. Another interesting key finding was observed

in grassland losses to water, which was higher in the period between 2008 and 2018, compared

to the losses in grassland to the similar LULC category over the first and second periods. This

is perhaps as a result of the construction of the Upper Atbara and Saiteet Dam complex and

the increase of water storage ponds for drinking water, domestic use and irrigation of agricul-

tural land during this period. The settlement loss targets water and grassland in the three study

periods with the addition of the forest in the second period (1998–2008). This could be linked

to pastoralism movements through seasonal migration routes and settling where there are

grass and water. Whereas, gaining in settlement target cropland and water in the second and

third periods, respectively, with no gain from any LULC class in the first period. Settlement is

usually located in the flat areas, where cropland can be also found in these areas. Hence, the

expansion in settlement areas, is likely to target cropland and water gathering sites.

The predicted results revealed that by 2028 and 2048, cropland is expected to increase by

0.12% and 0.72%, respectively as compared to 2018. This is partly attributed to the expansion

of mechanized farming in the study area. Similarly, the settlement might be increased from

0.44 to 0.50% between 2018 and 2048. This could be attributed to the rapid population growth

and refugee influx in the study area [90]. Whereas the forest acreage is anticipated to decrease

from 0.47% in 2018 to 0.41% in 2048. This could be linked to illegal cutting, overgrazing and
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mechanized agriculture since the population in Gedaref sate depends mainly on farming activ-

ities for livelihoods [44, 91]. The model prediction showed that the trend of grassland will con-

tinuously decrease by 7.78% in 2048 from 8.59% in 2018. Water will be relatively consistent in

the region in 2018, 2028 and 2048 by 0.89%, 0.89% and 0.88%, respectively.

The findings presented in this study could guide policymakers and different stakeholders to

effectively plan and manage the landscape in Gedaref state, Sudan. Also, the study provides

some insights on the main drivers that could play a vital role in changing the current and

future landscape structure in most important rainfed farming areas in Sudan. Knowing the

areal extent, change rate, intensity and transition of important LULC categories like cropland

and grassland over 30 years could enable an informed crop and grassland production monitor-

ing. Specifically, the results of the present study could complement the findings of Osman

et al. [20], who predicted the relationship between climate factors and crop yield in Gedaref

state under climate warming. Hence, total crop production in Gedaref could be predicted and

forecasted using both study findings. In general, different land use and environmental policy

and planning initiatives in Gedaref state or even in Sudan at large could make use of the find-

ings presented in this study.

Despite the fact that we have used a robust and efficient machine learning RF algorithm in

our LULC classification experiment, the method has some limitations. For instance, when a

large number of decision trees are used, the algorithm can be too slow to make the classifica-

tion predictions as it requires more computational power. Another disadvantage of RF is that

the method is a black or grey box approach with very little control over what the algorithm

does [58]. On the other hand, we simulated the future (2028 and 2048) LULC predictions

using the current natural and anthropogenic factors that might considerably change in the

future. In addition, other factors that could play a significant role in the future LULC shift like

fire, flood, conflict, and other geopolitical and socio-economic variables were not considered

in our study. We also mapped and detected the LULC shift till the year 2018 in Gedaref state,

which could have slightly changed in the year 2022. But, the LULC changes in such agro-sys-

tems might take a longer time period (more than four years) to take place.

Conclusions

In conclusion, this study is the first attempt to map and predict future LULC change and their

intensities and underline the processes that cause change in the landscape of Gedaref state.

Our results showed that LULC in Gedaref has undergone a distinct change in 30 years period

(1988–2018) with a considerable decline in forest and grassland areas and an expansion in set-

tlement areas. Our classified LULC maps and model validation for future LULC prediction

provided high accuracy (overall correctness = 87%). This demonstrates the possibility of map-

ping and predicting LULC classes using on-screen reference data from Google Earth images,

dense multi-date Landsat images, RF classifier and CA-ANN model. Our findings, provide

information on LULC patterns in Gedaref region that could be useful for designing manage-

ment plans and developing policies for assessing and monitoring crop and grassland produc-

tion, other natural resources produce, landscape fragmentation and degradation, and

ecosystem functions. This information is, therefore, critical in managing one of the most

important rainfed agricultural landscapes in Sudan.
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